cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A373335 Expansion of Sum_{k>=1} x^k / (1 + x^k + x^(2*k) + x^(3*k) + x^(4*k)).

Original entry on oeis.org

1, 0, 1, 0, 1, 1, 0, 0, 1, 0, 2, 0, 1, -1, 1, 1, 0, 1, 1, 0, 1, 0, 1, 0, 1, 1, 0, -1, 1, 1, 2, 0, 2, -1, 0, 1, 0, 0, 1, 0, 2, 0, 1, 0, 1, 1, 0, 1, 0, 0, 1, 0, 1, 0, 2, 0, 0, 0, 1, 0, 2, 0, 1, 0, 1, 2, 0, -1, 1, -1, 2, 0, 1, -1, 1, 1, 0, 2, 1, 1, 1, 0, 1, -1, 0, 1, 0, 0, 1, 1, 1, 0, 2, -1, 1, 1, 0, -1, 2, 0, 2
Offset: 1

Views

Author

Seiichi Manyama, Jun 01 2024

Keywords

Crossrefs

Programs

  • PARI
    my(N=110, x='x+O('x^N)); Vec(sum(k=1, N, x^k*(1-x^k)/(1-x^(5*k))))
    
  • PARI
    a(n) = sumdiv(n, d, (d%5==1)-(d%5==2));

Formula

G.f.: Sum_{k>=1} x^k * (1 - x^k) / (1 - x^(5*k)).
a(n) = A001876(n) - A001877(n).