A373341 Array read by ascending antidiagonals: A(n,k) is the number of acyclic de Bruijn sequences of order k and alphabet of size n, with k > 0.
1, 2, 1, 6, 4, 1, 24, 216, 16, 1, 120, 331776, 10077696, 256, 1, 720, 24883200000, 12116574790945106558976, 1023490369077469249536, 65536, 1
Offset: 1
Examples
The array begins: 1, 1, 1, ... 2, 4, 16, ... 6, 216, 10077696, ... 24, 331776, 12116574790945106558976, ... ...
Links
- D. Condon, Yuxin Wang, and E. Yang, De Bruijn Polyominoes, arXiv:2405.18543 [math.CO], 2024. See page 5.
- T. van Aardenne-Ehrenfest and N. G. de Brujin, Circuits and Trees in Oriented Linear Graphs. In: Simon Stevin 28 (1951), pp. 203-217.
Crossrefs
Programs
-
Mathematica
A[n_,k_]:=(n!)^(n^(k-1)); Table[A[n-k+1,k],{n,6},{k,n}]//Flatten
Formula
A(n,k) = (n!)^(n^(k-1)).
A(2,n) = A001146(n-1).
Comments