cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A373369 a(n) = gcd(A001414(n), A059975(n)), where A001414 and A059975 are fully additive with a(p) = p and a(p) = p-1, respectively.

Original entry on oeis.org

0, 1, 1, 2, 1, 1, 1, 3, 2, 1, 1, 1, 1, 1, 2, 4, 1, 1, 1, 3, 2, 1, 1, 1, 2, 1, 3, 1, 1, 1, 1, 5, 2, 1, 2, 2, 1, 1, 2, 1, 1, 3, 1, 3, 1, 1, 1, 1, 2, 3, 2, 1, 1, 1, 2, 1, 2, 1, 1, 4, 1, 1, 1, 6, 2, 1, 1, 3, 2, 1, 1, 1, 1, 1, 1, 1, 2, 3, 1, 1, 4, 1, 1, 2, 2, 1, 2, 1, 1, 1, 2, 3, 2, 1, 2, 1, 1, 1, 1, 2, 1, 1, 1, 1, 3
Offset: 1

Views

Author

Antti Karttunen, Jun 05 2024

Keywords

Crossrefs

Cf. A001414, A059975, A345452 (positions of even terms).

Programs

A373366 a(n) = gcd(A064097(n), A083345(n)).

Original entry on oeis.org

0, 1, 1, 1, 1, 1, 1, 3, 2, 1, 1, 4, 1, 1, 1, 2, 1, 1, 1, 1, 2, 1, 1, 1, 2, 3, 1, 2, 1, 1, 1, 5, 7, 1, 1, 1, 1, 7, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 7, 1, 1, 8, 1, 2, 1, 1, 1, 1, 1, 1, 3, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 4, 9, 1, 1, 1, 4, 1, 1, 1, 2, 9, 1, 1, 1, 1, 1, 3, 1, 1, 3, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1
Offset: 1

Views

Author

Antti Karttunen, Jun 02 2024

Keywords

Crossrefs

Cf. also A373363, A373365.

Programs

A373370 a(n) = gcd(bigomega(n), A064097(n)), where bigomega is number of prime factors with repetition, and A064097 is a quasi-logarithm defined inductively by a(1) = 0 and a(p) = 1 + a(p-1) if p is prime and a(n*m) = a(n) + a(m) if m,n > 1.

Original entry on oeis.org

0, 1, 1, 2, 1, 1, 1, 3, 2, 2, 1, 1, 1, 1, 1, 4, 1, 1, 1, 1, 2, 2, 1, 1, 2, 2, 3, 3, 1, 3, 1, 5, 1, 2, 1, 2, 1, 1, 1, 2, 1, 1, 1, 1, 1, 2, 1, 1, 2, 1, 1, 1, 1, 1, 2, 1, 2, 2, 1, 1, 1, 2, 1, 6, 2, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 4, 2, 1, 4, 2, 1, 1, 4, 1, 4, 1, 3, 1, 2, 1, 1, 1, 3, 3, 4, 1, 1, 1, 4, 3
Offset: 1

Views

Author

Antti Karttunen, Jun 05 2024

Keywords

Comments

As A001222 and A064097 are both fully additive sequences, all sequences that give the positions of multiples of some natural number k in this sequence are closed under multiplication, i.e., are multiplicative semigroups.

Crossrefs

Cf. also A373365, A373366.

Programs

Showing 1-3 of 3 results.