cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A373378 a(n) = gcd(A003415(n), A059975(n)), where A003415 is the arithmetic derivative and A059975 is fully additive with a(p) = p-1.

Original entry on oeis.org

0, 1, 1, 2, 1, 1, 1, 3, 2, 1, 1, 4, 1, 1, 2, 4, 1, 1, 1, 6, 2, 1, 1, 1, 2, 1, 3, 8, 1, 1, 1, 5, 2, 1, 2, 6, 1, 1, 2, 1, 1, 1, 1, 12, 1, 1, 1, 2, 2, 9, 2, 14, 1, 1, 2, 1, 2, 1, 1, 4, 1, 1, 1, 6, 2, 1, 1, 18, 2, 1, 1, 1, 1, 1, 5, 20, 2, 1, 1, 8, 4, 1, 1, 2, 2, 1, 2, 1, 1, 3, 2, 24, 2, 1, 2, 1, 1, 1, 1, 10, 1, 1, 1, 1, 1
Offset: 1

Views

Author

Antti Karttunen, Jun 05 2024

Keywords

Crossrefs

Cf. A368998 (positions of even terms), A368999 (of odd terms).

Programs

  • PARI
    A003415(n) = if(n<=1, 0, my(f=factor(n)); n*sum(i=1, #f~, f[i, 2]/f[i, 1]));
    A059975(n) = {my(f = factor(n)); sum(i = 1, #f~, f[i, 2]*(f[i, 1] - 1)); };
    A373378(n) = gcd(A003415(n), A059975(n));

Formula

For n >= 1, a(n) is a multiple of A373377(n).