A373398 Triangle read by rows: T(n, k) = number of k-element subobjects of an n-element set in the category of relations, n >= 0, 0 <= k <= n.
1, 1, 1, 1, 3, 1, 1, 7, 9, 1, 1, 15, 55, 25, 1, 1, 31, 285, 395, 65, 1, 1, 63, 1351, 5045, 2555, 161, 1, 1, 127, 6069, 56931, 78685, 15211, 385, 1, 1, 255, 26335, 592725, 2091171, 1101021, 85099, 897, 1, 1, 511, 111645, 5834515, 50334765, 67590387, 14169405, 454315, 2049, 1
Offset: 0
Examples
There are 9 2-element subobjects of a 3-element set in Rel. As truth matrices: [1 0] [1 0] [0 0] [1 0] [0 1] [0 1] [1 1] [1 0] [1 0] [0 1] [0 0] [1 0] [0 1] [1 0] [0 1] [1 0] [1 1] [0 1] [0 0] [0 1] [0 1] [0 1] [0 1] [1 0] [0 1] [0 1] [1 1] To convert to relations, note that each entry corresponds to whether [(1,1) (2,1)] [(1,2) (2,2)] [(1,3) (2,3)] is in the relation. Triangle starts: 1, 1, 1, 1, 3, 1, 1, 7, 9, 1, 1, 15, 55, 25, 1, 1, 31, 285, 395, 65, 1, 1, 63, 1351, 5045, 2555, 161, 1, 1, 127, 6069, 56931, 78685, 15211, 385, 1, 1, 255, 26335, 592725, 2091171, 1101021, 85099, 897, 1, 1, 511, 111645, 5834515, 50334765, 67590387, 14169405, 454315, 2049, 1, ...
Links
- Keith J. Bauer, Every monomorphism in Rel is regular.
- nLab, Rel
Crossrefs
Programs
-
Mathematica
T[n_,k_]:=SeriesCoefficient[(1 / (1 - 2^k* x)) * Product[1 / (1 - (2^k - 2^i) * x),{i,0,k-1}],{x,0,n}]; Table[T[n-k,k],{n,0,9},{k,0,n}]//Flatten (* Stefano Spezia, Jun 04 2024 *)
-
Sage
dim = 10 def getGF(n): R.
= PowerSeriesRing(ZZ, 'x', dim) f = 1 / (1 - 2^n * x) for k in range(n): f = f / (1 - (2^n - 2^k) * x) return f for n in range(dim): print([getGF(k).list()[n - k] for k in range(n + 1)])
Formula
G.f.: Sum_{n>=0} T(n + k, k) * x^n = (1 / (1 - 2^k * x)) * Product_{i=0..k-1} (1 / (1 - (2^k - 2^i) * x)).
Comments