A373401 Least k such that the k-th maximal antirun of prime numbers > 3 has length n. Position of first appearance of n in A027833. The sequence ends if no such antirun exists.
1, 2, 4, 6, 10, 8, 69, 40, 24, 46, 41, 21, 140, 82, 131, 210, 50, 199, 35, 30, 248, 192, 277, 185, 458, 1053, 251, 325, 271, 645, 748, 815, 811, 1629, 987, 826, 1967, 423, 1456, 2946, 1109, 406, 1870, 1590, 3681, 2920, 3564, 6423, 1426, 5953, 8345, 12687, 6846
Offset: 1
Keywords
Examples
The maximal antiruns of prime numbers > 3 begin: 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59 61 67 71 73 79 83 89 97 101 103 107 109 113 127 131 137 139 149 151 157 163 167 173 179 The a(n)-th rows are: 5 7 11 19 23 29 43 47 53 59 109 113 127 131 137 73 79 83 89 97 101 2269 2273 2281 2287 2293 2297 2309 1093 1097 1103 1109 1117 1123 1129 1151 463 467 479 487 491 499 503 509 521 For example, (19, 23, 29) is the first maximal antirun of length 3, so a(3) = 4.
Links
Crossrefs
Programs
-
Mathematica
t=Length/@Split[Select[Range[4,100000],PrimeQ],#1+2!=#2&]//Most; spna[y_]:=Max@@Select[Range[Length[y]],SubsetQ[t,Range[#]]&]; Table[Position[t,k][[1,1]],{k,spna[t]}]
Comments