A373420 Number of Carlitz compositions of n (see A003242) such that the first and last parts are equal.
1, 1, 1, 1, 2, 3, 2, 7, 11, 17, 26, 54, 86, 155, 272, 464, 816, 1447, 2507, 4400, 7706, 13456, 23570, 41293, 72212, 126394, 221282, 387219, 677714, 1186311, 2076170, 3633761, 6360219, 11131698, 19483066, 34100455, 59683664, 104460655, 182832044, 319999739
Offset: 0
Examples
a(7) = 7 counts: (1,2,1,2,1), (1,2,3,1), (1,3,2,1), (1,5,1), (2,3,2), (3,1,3), and (7).
Programs
-
PARI
C_x(N) = {my(g=1/(1-sum(k=1, N, x^k/(1+x^k))));g} A_x(i,N) = {my( x='x+O('x^N), f=(x^i)*(C_x(N)*(x^i)+x^i+1)/(1+x^i)^2);f} D_x(N) = {my( x='x+O('x^N), f=1+sum(i=1,N, A_x(i,N))); Vec(f)} D_x(40)
Formula
G.f.: 1 + Sum_{i>0} (x^i)*(C(x)*(x^i) + x^i + 1)/(1+x^i)^2 where C(x) is the g.f. for A003242.