A373422 Triangle read by rows: T(n,k) = number of permutations of [n] starting from k that have zero (n-1)-th differences. (n>=1, 1<=k<=n).
0, 0, 0, 1, 0, 1, 1, 0, 0, 1, 4, 2, 4, 2, 4, 3, 0, 0, 0, 0, 3, 40, 36, 40, 40, 40, 36, 40, 29, 0, 0, 0, 0, 0, 0, 29, 232, 152, 240, 200, 208, 200, 240, 152, 232, 235, 142, 140, 257, 168, 168, 257, 140, 142, 235, 11712, 13216, 12208, 12384, 11408, 11136, 11408, 12384, 12208, 13216, 11712
Offset: 1
Examples
T(3,1) = 1 because [1,2,3] have zero 2nd differences. 1 2 3 1 1 0 Triangle starts: 0; 0, 0; 1, 0, 1; 1, 0, 0, 1; 4, 2, 4, 2, 4; 3, 0, 0, 0, 0, 3; 40, 36, 40, 40, 40, 36, 40; 29, 0, 0, 0, 0, 0, 0, 29; 232, 152, 240, 200, 208, 200, 240, 152, 232; 235, 142, 140, 257, 168, 168, 257, 140, 142, 235;
Links
- Seiichi Manyama, Rows n = 1..14, flattened
Crossrefs
Row sums give 2 * A131502(n-1).
Programs
-
PARI
tabl(n) = my(nn=vector(n)); forperm([1..n], p, if(sum(k=1, n, (-1)^k*binomial(n-1, k-1)*p[k])==0, nn[p[1]]++)); nn;
Formula
T(n,k) = T(n,n+1-k) for 1<=k<=n.
If p is prime, T(p+1,k) = 0 for 2 <= k <= p.