A373431 Triangle read by rows: Coefficients of the polynomials N(n, x) * EZ(n, x), where N denote the Narayana polynomials A131198 and EZ the Eulerian zig-zag polynomials A205497.
1, 1, 1, 1, 1, 4, 4, 1, 1, 9, 25, 25, 9, 1, 1, 17, 97, 221, 221, 97, 17, 1, 1, 29, 291, 1229, 2476, 2476, 1229, 291, 29, 1, 1, 47, 760, 5303, 18415, 33818, 33818, 18415, 5303, 760, 47, 1, 1, 74, 1818, 19481, 106272, 317902, 544727, 544727, 317902, 106272, 19481, 1818, 74, 1
Offset: 0
Examples
Triangle starts: [0] 1; [1] 1; [2] 1, 1; [3] 1, 4, 4, 1; [4] 1, 9, 25, 25, 9, 1; [5] 1, 17, 97, 221, 221, 97, 17, 1; [6] 1, 29, 291, 1229, 2476, 2476, 1229, 291, 29, 1;
Links
- Peter Luschny, Illustrating the polynomials.
Programs
-
Maple
R := proc(n) option remember; local F; if n = 0 then 1/(1 - q*x) else F := R(n-1); simplify(p/(p - q)*(subs({p = q, q = p}, F) - subs(p = q, F))) fi end: EZ := (n, x) -> ifelse(n < 3, 1, expand(simplify(subs({p = 1, q = 1}, R(n))*(1 - x)^(n + 1)) / x^2)): nc := (n, k) -> `if`(n = 0, 0^n, binomial(n, k)^2*(n-k)/(n*(k+1))): N := (n, x) -> local k; simplify(add(nc(n, k)*x^k, k = 0..n)): NEZ := (n, x) -> expand(EZ(n, x) * N(n, x)): Trow := n -> local k; if n < 2 then 1 elif n = 2 then 1, 1 else seq(coeff(NEZ(n, x), x, k), k = 0..2*n-3) fi: seq(print(Trow(n)), n = 0..6);
Comments