A373432 Triangle read by rows. Coefficients of the polynomials P(n, x) * EZ(n, x), where P denote the Pascal polynomials and EZ the zig-zag Eulerian polynomials A205497.
1, 1, 1, 1, 2, 1, 1, 4, 6, 4, 1, 1, 7, 19, 26, 19, 7, 1, 1, 12, 52, 116, 150, 116, 52, 12, 1, 1, 20, 130, 430, 845, 1052, 845, 430, 130, 20, 1, 1, 33, 312, 1453, 4023, 7218, 8736, 7218, 4023, 1453, 312, 33, 1, 1, 54, 730, 4639, 17316, 42142, 70593, 83610, 70593, 42142, 17316, 4639, 730, 54, 1
Offset: 0
Examples
Triangle starts: [0] [1] [1] [1, 1] [2] [1, 2, 1] [3] [1, 4, 6, 4, 1] [4] [1, 7, 19, 26, 19, 7, 1] [5] [1, 12, 52, 116, 150, 116, 52, 12, 1] [6] [1, 20, 130, 430, 845, 1052, 845, 430, 130, 20, 1]
Links
- Peter Luschny, Illustrating the polynomials.
Programs
-
Maple
EZP := proc(P, len) local R, EZ, EP, EZP, CL, n; R := proc(n) option remember; local F; if n = 0 then 1/(1-q*x) else F := R(n-1); simplify(p/(p - q)*(subs({p = q, q = p}, F) - subs(p = q, F))) fi end: EZ := (n, x) -> ifelse(n < 3, 1, expand(simplify(subs({p = 1, q = 1}, R(n))*(1-x)^(n+1))/x^2)): EP := (n, x) -> local k; simplify(add(P(n, k)*x^k, k = 0..n)): EZP := (n, x) -> expand(EZ(n, x) * EP(n, x)): CL := p -> PolynomialTools:-CoefficientList(p, x); seq(CL(EZP(n, x)), n = 0..len); ListTools:-Flatten([%]) end: EZP(binomial, 8);
Comments