A373436 Triangle read by rows: T(n,k) is the sum of domination numbers of spanning subgraphs with k edges in the n-cycle graph.
1, 1, 2, 2, 1, 3, 6, 3, 1, 4, 12, 12, 8, 2, 5, 20, 30, 25, 10, 2, 6, 30, 60, 66, 42, 12, 2, 7, 42, 105, 147, 126, 63, 21, 3, 8, 56, 168, 288, 312, 216, 96, 24, 3, 9, 72, 252, 513, 675, 594, 351, 135, 27, 3, 10, 90, 360, 850, 1320, 1410, 1050, 540, 180, 40, 4
Offset: 1
Examples
Example of spanning subgraphs of cycle with 2 vertices: Domination number: 2 1 1 1 /\ /\ . . . . . . . . \/ \/ Number of edges: 0 1 1 2 Number of spanning subgraphs with k edges and domination number m in cycle with n = 3 vertices: k\m 1 2 3 0 0 0 1 1 0 3 0 2 3 0 0 3 1 0 0 T(3,k) = Sum_{m=1..3} m*F(3,m,k) T(3,0) = 3, T(3,1) = 6, T(3,2) = 3, T(3,3) = 1 The triangle T(n,k) begins: n\k 0 1 2 3 4 5 6 7 8 9 10 11 12 ... 1: 1 1 2: 2 2 1 3: 3 6 3 1 4: 4 12 12 8 2 5: 5 20 30 25 10 2 6: 6 30 60 66 42 12 2 7: 7 42 105 147 126 63 21 3 8: 8 56 168 288 312 216 96 24 3 9: 9 72 252 513 675 594 351 135 27 3 10: 10 90 360 850 1320 1410 1050 540 180 40 4 11: 11 110 495 1331 2387 3003 2706 1749 792 242 44 4 12: 12 132 660 1992 4056 5880 6228 4860 2772 1128 312 48 4
Links
- Paolo Xausa, Table of n, a(n) for n = 1..11475 (rows 1..150 of the triangle, flattened).
Crossrefs
Cf. A365327.
Programs
Formula
T(n,k) = n for k = 0.
T(n,k) = n*(T(n-1,k)+T(n-1,k-1))/(n-1) for 0 < k < n-1.
T(n,k) = n*ceiling(n/3) for k = n-1.
T(n,k) = ceiling(n/3) for k = n.
Average value of the domination number E(n,p) = Sum_{k=0..n} (p^k*(1-p)^(n-k)*(T(n,k))).
E(1,p) = 1*p^0*(1-p)^1 + 1*p^1*(1-p)^0 = 1 - 1*p + p^1 = 1.
E(2,p) = 2*p^0*(1-p)^2 + 2*p^1*(1-p)^1 + 1*p^2*(1-p)^0 = 2 - 2*p + p^2.
E(3,p) = 3*p^0*(1-p)^3 + 6*p^1*(1-p)^2 + 3*p^2*(1-p)^1 + 1*p^3*(1-p)^0 = 3 - 3*p + p^3.
E(4,p) = 4*(1-p)^4 + 12*p*(1-p)^3 + 12*p^2*(1-p)^2 + 8*p^3*(1-p) + 2*p^4 = 4 - 4*p + 4*p^3 - 4*p^4 + 2*p^4.
E(5,p) = 5 - 5*p + 5*p^3 - 5*p^4 + 2*p^5.
E(6,p) = 6 - 6*p + 6*p^3 - 6*p^4 + 2*p^6.
E(7,p) = 7 - 7*p + 7*p^3 - 7*p^4 + 7*p^6 - 7*p^7 + 3*p^7.
E(8,p) = 8 - 8*p + 8*p^3 - 8*p^4 + 8*p^6 - 8*p^7 + 3*p^8.
E(9,p) = 9 - 9*p + 9*p^3 - 9*p^4 + 9*p^6 - 9*p^7 + 3*p^9.
E(10,p) = 10 - 10*p + 10*p^3 - 10*p^4 + 10*p^6 - 10*p^7 + 10*p^9 - 10*p^10 + 4*p^10.
We can see a pattern:
E(n,p) = n*(Sum_{i=0..ceiling(n/3)-1} p^(3*i)) - n*(Sum_{i=0..ceiling(n/3)-1} p^(3*i+1)) + ceiling(n/3)*p^n.
n*(Sum_{i=0..ceiling(n/3)-1} p^(3*i)) = n*(1-p^(3*ceiling(n/3)))/(1-p^3) = n*(1-p^(3*ceiling(n/3)))/((1-p)*(p^2+p+1)).
n*(Sum_{i=0..ceiling(n/3)-1} p^(3*i+1)) = n*p*(1-p^(3*ceiling(n/3)))/((1-p)*(p^2+p+1)).
n*(Sum_{i=0..ceiling(n/3)-1} p^(3*i)) - n*(Sum_{i=0..ceiling(n/3)-1} p^(3*i+1)) = n*(1-p^(3*ceiling(n/3)))/(p^2+p+1).
E(n,p) = n*(1-p^(3*ceiling(n/3)))/(p^2+p+1) + ceiling(n/3)*p^n.
E(n,p) = n for p = 0.
E(n,p) = ceiling(n/3) for p = 1.
Relative average domination number:
E'(n,p) = E(n,p)/n.
E'(n,p) = (1-p^(3*ceiling(n/3)))/(p^2+p+1) + ceiling(n/3)*p^n/n.
Limit_{n->oo} E'(n,p) = lim_{n->oo} (1-p^(3*ceiling(n/3)))/(p^2+p+1) + lim_{n->oo} ceiling(n/3)*p^n/n = 1/(p^2+p+1).
Limit_{n->oo} E'(n,0) = 1.
Limit_{n->oo} E'(n,0.5) = 4/7.
Limit_{n->oo} E'(n,1) = 1/3.
Comments