A365327 Triangle read by rows: T(n,k) is the number of spanning subgraphs of the n-cycle graph with domination number k.
2, 3, 1, 4, 3, 1, 0, 11, 4, 1, 0, 11, 15, 5, 1, 0, 10, 26, 21, 6, 1, 0, 0, 43, 49, 28, 7, 1, 0, 0, 33, 98, 80, 36, 8, 1, 0, 0, 22, 126, 189, 120, 45, 9, 1, 0, 0, 0, 141, 322, 325, 170, 55, 10, 1, 0, 0, 0, 89, 462, 671, 517, 231, 66, 11, 1, 0, 0, 0, 46, 480, 1162, 1236, 777, 304, 78, 12, 1, 0, 0, 0, 0, 417, 1586, 2483, 2093, 1118, 390, 91, 13, 1
Offset: 1
Examples
Example of spanning subgraphs of cycle with 2 vertices: Domination number: 2 1 1 1 /\ /\ . . . . . . . . \/ \/ The triangle T(n,k) begins: n\k 1 2 3 4 5 6 7 8 9 10 11 12 ... 1: 2 2: 3 1 3: 4 3 1 4: 0 11 4 1 5: 0 11 15 5 1 6: 0 10 26 21 6 1 7: 0 0 43 49 28 7 1 8: 0 0 33 98 80 36 8 1 9: 0 0 22 126 189 120 45 9 1 10: 0 0 0 141 322 325 170 55 10 1 11: 0 0 0 89 462 671 517 231 66 11 1 12: 0 0 0 46 480 1162 1236 777 304 78 12 1
Links
- Roman Hros, Table of n, a(n) for n = 1..253 (Rows n = 1..22)
- Roman Hros, Effective Enumeration of Selected Graph Characteristics, IIT.SRC 2020: 16th Student Research Conference in Informatics and Information Technologies.
Formula
T(n,n) = 1 for n > 1.
T(n,n-1) = T(n-1, n-2) + 1 for n > 3.
T(n,n-2) = T(n-1, n-3) + T(n, n-1) for n > 5.
T(n,n-3) = T(n-1, n-4) + T(n, n-2) - 5 for n > 6.
T(n,n-4) = T(n-1, n-5) + T(n-1, n-4) + 11 + Sum_{i=1..n-9} (i+4) for n > 8.
G.f.:
For n > 3; G(n) = x*(G(n-1) + G(n-2) + 2*G(n-3)) + g(n); where
2*(1-x)*x^(n/3) for n mod 3 = 0.
g(n) = { 0 for n mod 3 = 1.
(1-x)*x^((n+1)/3) for n mod 3 = 2.
For n mod 3 = 0:
T(n,k) = 2*T(n-3,k-1) + T(n-2,k-1) + T(n-1,k-1) + 2 for k = n/3.
T(n,k) = 2*T(n-3,k-1) + T(n-2,k-1) + T(n-1,k-1) - 2 for k = n/3 + 1.
T(n,k) = 2*T(n-3,k-1) + T(n-2,k-1) + T(n-1,k-1) for k >= n/3 + 2.
For n mod 3 = 1:
T(n,k) = 2*T(n-3,k-1) + T(n-2,k-1) + T(n-1,k-1) for k >= (n+2)/3.
For n mod 3 = 2:
T(n,k) = 2*T(n-3,k-1) + T(n-2,k-1) + T(n-1,k-1) + 1 for k = (n+1)/3.
T(n,k) = 2*T(n-3,k-1) + T(n-2,k-1) + T(n-1,k-1) - 1 for k = (n+1)/3 + 1.
T(n,k) = 2*T(n-3,k-1) + T(n-2,k-1) + T(n-1,k-1) for k >= (n+1)/3 + 2.
Comments