cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A373438 Expansion of Sum_{k>=1} k * x^(3^(k-1)) / (1 - x^(3^(k-1))).

Original entry on oeis.org

1, 1, 3, 1, 1, 3, 1, 1, 6, 1, 1, 3, 1, 1, 3, 1, 1, 6, 1, 1, 3, 1, 1, 3, 1, 1, 10, 1, 1, 3, 1, 1, 3, 1, 1, 6, 1, 1, 3, 1, 1, 3, 1, 1, 6, 1, 1, 3, 1, 1, 3, 1, 1, 10, 1, 1, 3, 1, 1, 3, 1, 1, 6, 1, 1, 3, 1, 1, 3, 1, 1, 6, 1, 1, 3, 1, 1, 3, 1, 1, 15, 1, 1, 3, 1, 1, 3, 1, 1, 6, 1, 1, 3, 1, 1, 3, 1, 1, 6, 1, 1, 3, 1, 1, 3
Offset: 1

Views

Author

Ilya Gutkovskiy, Jun 05 2024

Keywords

Crossrefs

Programs

  • Mathematica
    nmax = 105; CoefficientList[Series[Sum[k x^(3^(k - 1))/(1 - x^(3^(k - 1))), {k, 1, Floor[Log[3, nmax]] + 1}], {x, 0, nmax}], x] // Rest
    Table[Binomial[IntegerExponent[3 n, 3] + 1, 2], {n, 1, 105}]
  • PARI
    a(n) = {my(e = valuation(n, 3)); (e+1)*(e+2)/2;} \\ Amiram Eldar, Jun 27 2024

Formula

a(n) = A000217(A051064(n)).
From Vaclav Kotesovec, Jun 25 2024: (Start)
Dirichlet g.f.: zeta(s) * (3^s/(3^s-1))^2.
Sum_{k=1..n} a(k) ~ 9*n/4 - log(n)*(log(n) + 2*log(6*Pi))/(4*log(3)^2). (End)
Multiplicative with a(p^e) = (e+1)*(e+2)/2 if p = 3 and 1 if p != 3. - Amiram Eldar, Jun 27 2024