cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A373445 Triple convolution of the three tribonacci-like sequences A000073(n), A077947(n-2), and A103143(n).

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 1, 3, 9, 28, 75, 195, 498, 1229, 2978, 7115, 16756, 39031, 90089, 206228, 468795, 1059197, 2380257, 5323610, 11856514, 26306896, 58172254, 128246136, 281957282, 618367332, 1353112803
Offset: 0

Views

Author

Greg Dresden and Xiaoyuan Wang, Jun 05 2024

Keywords

Comments

If we set b(n)=A000073(n), c(n)=A077947(n-2) with c(0)=c(1)=0, and d(n)=A103143(n), then all three sequences b(n), c(n), and d(n) start with the terms 0,0,1,1,2 and have signatures {1,1,1}, {1,1,2}, and {1,1,3} respectively. The triple convolution is defined as a(n) = Sum_{i+j+k=n} b(i)*c(j)*d(k).

Examples

			For n=7 the triple convolution of the three sequences b(n)=A000073(n), c(n)=A077947(n-2) with c(0)=c(1)=0, and d(n)=A103143(n) has only three nonzero terms in the sum: b(2)*c(2)*d(3), b(2)*c(3)*d(2), and b(3)*c(2)*c(2). All three terms are 1, so the triple convolution adds up to 3. Hence, a(7) = 3.
		

Crossrefs

Programs

  • Mathematica
    CoefficientList[Series[x^6/((1-x-x^2-x^3)(1-x-x^2-2x^3)(1-x-x^2-3x^3)), {x, 0, 30}], x]

Formula

a(n) = (A000073(n+2) + A103143(n+2))/2 - A077947(n).
a(n) = 3*a(n-1) + a(n-3) - 12*a(n-4) - 3*a(n-5) + 2*a(n-6) + 17*a(n-7) + 11*a(n-8) + 6*a(n-9).
G.f.: x^6/((1 - 2*x)*(1 + x + x^2)*(1 - x - x^2 - x^3)*(1 - x - x^2 - 3*x^3)).