cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A373476 Numbers k such that k, A001414(k) and A083345(k) are all multiples of 3, where A001414 is fully additive with a(p) = p, and A083345 is the numerator of the fully additive function with a(p) = 1/p.

Original entry on oeis.org

19683, 157464, 275562, 393660, 511758, 688905, 747954, 866052, 984150, 1220346, 1259712, 1279395, 1338444, 1456542, 1515591, 1692738, 1810836, 1869885, 2165130, 2204496, 2283228, 2342277, 2401326, 2460375, 2637522, 2814669, 2873718, 3050865, 3109914, 3149280, 3168963, 3228012, 3346110, 3641355, 3700404, 3818502
Offset: 1

Views

Author

Antti Karttunen, Jun 06 2024

Keywords

Comments

Numbers k such that A373474(k) = 1+A369658(k).
All terms are multiples of 19683 [= 3^9].

Crossrefs

Intersection of A008585 and A373475.
Setwise difference A373475 \ A369659.

Programs

  • PARI
    A001414(n) = ((n=factor(n))[, 1]~*n[, 2]); \\ From A001414.
    A083345(n) = { my(f=factor(n)); numerator(vecsum(vector(#f~, i, f[i, 2]/f[i, 1]))); };
    isA373476(n) = (!(n%3) && !(A001414(n)%3) && !(A083345(n)%3));

Formula

a(n) = 3^9 * A373475(n).