A373480 a(n) = A003415(n) mod A001414(n), where A003415 is the arithmetic derivative, and A001414 is the sum of prime factors with multiplicity.
1, 1, 0, 1, 0, 1, 0, 0, 0, 1, 2, 1, 0, 0, 0, 1, 5, 1, 6, 0, 0, 1, 8, 0, 0, 0, 10, 1, 1, 1, 0, 0, 0, 0, 0, 1, 0, 0, 2, 1, 5, 1, 3, 6, 0, 1, 2, 0, 9, 0, 5, 1, 4, 0, 1, 0, 0, 1, 8, 1, 0, 12, 0, 0, 13, 1, 9, 0, 3, 1, 0, 1, 0, 3, 11, 0, 17, 1, 7, 0, 0, 1, 12, 0, 0, 0, 4, 1, 6, 0, 15, 0, 0, 0, 12, 1, 13, 7, 0, 1, 3, 1, 12, 11
Offset: 2
Links
- Antti Karttunen, Table of n, a(n) for n = 2..65537
Crossrefs
Programs
-
Mathematica
Array[Mod[If[#1 < 2, 0, #1 Total[#2/#1 & @@@ #2]], Total[Times @@@ #2]] & @@ {#, FactorInteger[#]} &, 120, 2] (* Michael De Vlieger, Jun 08 2024 *)
-
PARI
A001414(n) = ((n=factor(n))[, 1]~*n[, 2]); \\ From A001414. A003415(n) = if(n<=1, 0, my(f=factor(n)); n*sum(i=1, #f~, f[i, 2]/f[i, 1])); A373480(n) = (A003415(n)%A001414(n));