cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A373485 a(n) = gcd(A083345(n), A276085(n)), where A276085 is fully additive with a(p) = p#/p, and A083345 is the numerator of the fully additive function with a(p) = 1/p.

Original entry on oeis.org

0, 1, 1, 1, 1, 1, 1, 3, 2, 7, 1, 4, 1, 1, 8, 2, 1, 1, 1, 2, 2, 1, 1, 1, 2, 1, 1, 8, 1, 1, 1, 5, 2, 1, 12, 1, 1, 1, 8, 1, 1, 1, 1, 4, 1, 1, 1, 1, 2, 1, 4, 2, 1, 1, 8, 1, 2, 1, 1, 1, 1, 1, 17, 3, 6, 1, 1, 2, 2, 1, 1, 1, 1, 1, 1, 4, 6, 1, 1, 1, 4, 1, 1, 1, 2, 1, 8, 1, 1, 1, 20, 4, 2, 1, 12, 1, 1, 1, 1, 7, 1, 1, 1, 1, 1
Offset: 1

Views

Author

Antti Karttunen, Jun 09 2024

Keywords

Comments

For all n >= 1, A373145(n) is a multiple of a(n).
For all i, j: A373151(i) = A373151(j) => a(i) = a(j) => A373483(i) = A373483(j).

Crossrefs

Cf. A369002 (positions of even terms), A369003 (of odd terms), A373483, A373484 (of multiples of 3).

Programs

  • PARI
    A083345(n) = { my(f=factor(n)); numerator(vecsum(vector(#f~, i, f[i, 2]/f[i, 1]))); };
    A276085(n) = { my(f = factor(n)); sum(k=1, #f~, f[k, 2]*prod(i=1,primepi(f[k, 1]-1),prime(i))); };
    A373485(n) = gcd(A083345(n), A276085(n));