A373496 Number of (binary) heaps with element set [n] and length n+1.
0, 1, 3, 7, 23, 70, 320, 985, 4690, 19600, 121920, 549600, 3775200, 21964800, 186700800, 983954400, 7898290400, 53301248000, 523712716800, 3600440064000, 37065077913600, 315001589760000, 3848127528960000, 30288467049984000, 357688760600371200, 3481899302289408000
Offset: 0
Keywords
Examples
a(1) = 1: 11. a(2) = 3: 211, 212, 221. a(3) = 7: 3121, 3211, 3212, 3221, 3231, 3312, 3321. a(4) = 23: 42311, 42312, 42321, 43112, 43121, 43122, 43123, 43132, 43211, 43212, 43213, 43221, 43231, 43312, 43321, 43412, 43421, 44123, 44132, 44213, 44231, 44312, 44321. (The examples use max-heaps.)
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..527
- Eric Weisstein's World of Mathematics, Heap
- Wikipedia, Binary heap
Programs
-
Maple
b:= proc(n, k) option remember; `if`(n=0, 1, (g-> (f-> add(b(f, j)*b(n-1-f, j), j=1..k) )(min(g-1, n-g/2)))(2^ilog2(n))) end: a:= n-> add(binomial(n, j)*(-1)^j*b(n+1, n-j), j=0..n): seq(a(n), n=0..29);
Formula
a(n) = A373451(n+1,n).
Comments