cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A373507 Decimal expansion of 1/2 - sqrt(3)*Pi/18.

Original entry on oeis.org

1, 9, 7, 7, 0, 0, 1, 0, 5, 9, 6, 0, 9, 6, 3, 6, 9, 1, 5, 6, 7, 6, 5, 3, 6, 2, 3, 7, 2, 6, 3, 0, 7, 3, 7, 7, 9, 5, 2, 6, 5, 5, 6, 2, 5, 3, 1, 7, 8, 7, 6, 5, 7, 0, 7, 3, 8, 3, 5, 2, 5, 1, 0, 7, 6, 8, 6, 4, 6, 1, 3, 6, 4, 7, 8, 9, 4, 1, 0, 1, 9, 3, 8, 5, 9, 7
Offset: 0

Views

Author

R. J. Mathar, Jun 07 2024

Keywords

Examples

			0.1977001059609636915676536237263...
		

Crossrefs

Cf. A373508 (denominator (n-1)^2), A373506 (denominator n+1), A073010 (denominator n).

Programs

  • Maple
    1/2-sqrt(3)*Pi/18; evalf(%) ;
  • Mathematica
    RealDigits[1/2 - Sqrt[3]*Pi/18, 10, 120][[1]] (* Amiram Eldar, Jun 10 2024 *)
  • PARI
    1/2 - sqrt(3)*Pi/18 \\ Amiram Eldar, Jun 10 2024

Formula

Equals Sum_{n>=2} 1/((n-1)*binomial(2n,n)).
Sum_{n>=2} (-1)^n/((n-1)*binomial(2n,n)) = 3*log(phi)/sqrt(5) - 1/2 = 0.145613... where phi is the golden ratio.
Showing 1-1 of 1 results.