cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A373506 Decimal expansion of 4*Pi/3^(3/2) - Pi^2/9.

Original entry on oeis.org

1, 3, 2, 1, 7, 7, 6, 4, 4, 1, 0, 8, 0, 1, 3, 9, 5, 0, 9, 8, 1, 0, 4, 9, 4, 2, 3, 2, 4, 2, 5, 5, 2, 4, 1, 8, 3, 5, 6, 6, 1, 2, 1, 7, 2, 9, 9, 8, 5, 7, 8, 8, 4, 7, 5, 6, 0, 2, 8, 0, 7, 7, 6, 0, 9, 3, 7, 4, 9, 2, 5, 9, 4, 5, 6, 6, 3, 3, 7, 9, 2, 9, 0, 2, 3, 0, 8
Offset: 1

Views

Author

R. J. Mathar, Jun 07 2024

Keywords

Examples

			1.321776441080139509810494232425524183566...
		

Crossrefs

Cf. A100044, A275486, A073016 (no n+1 denominator), A073010 (denominator n), A373507 (denominator n-1).

Programs

  • Maple
    4*Pi/3^(3/2)-Pi^2/9 ; evalf(%) ;
  • Mathematica
    RealDigits[4*Pi/3^(3/2) - Pi^2/9, 10, 120][[1]] (* Amiram Eldar, Jun 10 2024 *)
  • PARI
    4*Pi/3^(3/2) - Pi^2/9 \\ Amiram Eldar, Jun 10 2024

Formula

Equals Sum_{n>=0} 1/((n+1)*binomial(2n,n)).
The alternating case is Sum_{n>=0} (-1)^n/((n+1)*binomial(2*n,n)) = 8*log(phi)/sqrt(5)-4*log^2(phi) = 0.79537... where phi is the golden ratio.
Equals A275486 - A100044. - Stefano Spezia, Jun 07 2024

A373508 Decimal expansion of sqrt(3)*Pi/6 + Pi^2/36 - 1.

Original entry on oeis.org

1, 8, 1, 0, 5, 5, 3, 5, 9, 9, 2, 5, 1, 4, 6, 6, 6, 4, 7, 0, 9, 1, 0, 8, 3, 2, 3, 2, 6, 2, 0, 8, 2, 0, 6, 4, 3, 4, 5, 1, 9, 1, 4, 4, 0, 9, 1, 4, 1, 7, 0, 0, 2, 7, 4, 0, 7, 5, 3, 5, 5, 0, 5, 9, 2, 2, 3, 9, 6, 1, 6, 8, 9, 6, 3, 7, 1, 0, 4, 2, 0, 8, 1, 4
Offset: 0

Views

Author

R. J. Mathar, Jun 07 2024

Keywords

Examples

			0.181055359925146664709108323262082...
		

Crossrefs

Cf. A093766, A100044, A373507 (denominator n-1), A073010 (denominator n).

Programs

  • Maple
    (sqrt(3)+Pi/6)*Pi/6-1; evalf(%) ;
  • Mathematica
    RealDigits[Sqrt[3]*Pi/6 + Pi^2/36 - 1, 10, 120][[1]] (* Amiram Eldar, Jun 10 2024 *)
  • PARI
    sqrt(3)*Pi/6 + Pi^2/36 - 1 \\ Amiram Eldar, Jun 10 2024

Formula

Equals Sum_{n>=2} 1/((n-1)^2*binomial(2n,n)).
Sum_{n>=2} (-1)^n/((n-1)^2*binomial(2n,n)) = 1 - sqrt(5)*log(phi) + log(phi)^2 = 0.1555... where phi is the golden ratio.
Equals A093766 + A100044/4 - 1. - Stefano Spezia, Jun 07 2024
Showing 1-2 of 2 results.