cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A373519 Expansion of e.g.f. exp(x/(1 - x^4)^(1/4)).

Original entry on oeis.org

1, 1, 1, 1, 1, 31, 181, 631, 1681, 60481, 687961, 4379761, 19982161, 802740511, 13848694861, 131732390791, 873339798241, 38385869907841, 894783905472241, 11506538747852641, 101612306808695521, 4824806928717603871, 142148609212891008421
Offset: 0

Views

Author

Seiichi Manyama, Jun 08 2024

Keywords

Crossrefs

Programs

  • Mathematica
    nmax = 25; CoefficientList[Series[E^(x/(1 - x^4)^(1/4)), {x, 0, nmax}], x] * Range[0, nmax]! (* Vaclav Kotesovec, Sep 03 2025 *)
  • PARI
    a(n) = n!*sum(k=0, n\4, binomial(n/4-1, k)/(n-4*k)!);

Formula

a(n) = n! * Sum_{k=0..floor(n/4)} binomial(n/4-1,k)/(n-4*k)!.
a(n) == 1 mod 30.
From Vaclav Kotesovec, Sep 03 2025: (Start)
a(n) = (5*n^4 - 80*n^3 + 505*n^2 - 1480*n + 1681)*a(n-4) - 5*(n-8)*(n-7)*(n-6)^2*(n-5)*(n-4)*(2*n^2 - 24*n + 85)*a(n-8) + 5*(n-12)*(n-11)*(n-10)*(n-9)*(n-8)^2*(n-7)*(n-6)*(n-5)*(n-4)*(2*n^2 - 32*n + 135)*a(n-12) - 5*(n-16)*(n-15)*(n-14)*(n-13)*(n-12)^2*(n-11)*(n-10)^2*(n-9)*(n-8)^2*(n-7)*(n-6)*(n-5)*(n-4)*a(n-16) + (n-20)*(n-19)*(n-18)*(n-17)*(n-16)^2*(n-15)*(n-14)*(n-13)*(n-12)^2*(n-11)*(n-10)*(n-9)*(n-8)^2*(n-7)*(n-6)*(n-5)*(n-4)*a(n-20).
a(n) ~ 5^(-1/2) * exp(5*n^(1/5)/4 - n) * n^(n - 2/5).
(End)

A373526 Expansion of e.g.f. exp(x * (1 + x^4)^(3/4)).

Original entry on oeis.org

1, 1, 1, 1, 1, 91, 541, 1891, 5041, -22679, 703081, 9397081, 59946481, 510926131, -1770628859, 28435376971, 879567081121, 1118967005521, 133425791669521, -153681150137039, 1206979480409761, 974131304609110411, -2730300052811686739, 68047061689139820211
Offset: 0

Views

Author

Seiichi Manyama, Jun 08 2024

Keywords

Crossrefs

Programs

  • PARI
    a(n) = n!*sum(k=0, n\4, binomial(3*n/4-3*k, k)/(n-4*k)!);

Formula

a(n) = n! * Sum_{k=0..floor(n/4)} binomial(3*n/4-3*k,k)/(n-4*k)!.
a(n) == 1 mod 90.

A373520 Expansion of e.g.f. exp(x/(1 - x^4)^(1/2)).

Original entry on oeis.org

1, 1, 1, 1, 1, 61, 361, 1261, 3361, 143641, 1829521, 12501721, 59922721, 2173048021, 44315751481, 478799701381, 3492321094081, 116722067432881, 3290135175240481, 50242015215929521, 508061488330088641, 16418736123292904941, 585427887134915295241
Offset: 0

Views

Author

Seiichi Manyama, Jun 08 2024

Keywords

Crossrefs

Programs

  • Mathematica
    nmax = 25; CoefficientList[Series[E^(x/(1 - x^4)^(1/2)), {x, 0, nmax}], x] * Range[0, nmax]! (* Vaclav Kotesovec, Sep 03 2025 *)
  • PARI
    a(n) = n!*sum(k=0, n\4, binomial(n/2-k-1, k)/(n-4*k)!);

Formula

a(n) = n! * Sum_{k=0..floor(n/4)} binomial(n/2-k-1,k)/(n-4*k)!.
a(n) == 1 mod 60.
From Vaclav Kotesovec, Sep 03 2025: (Start)
Recurrence: (n-8)*a(n) = (n-8)*a(n-2) + 3*(n-4)*(n-3)*(n-2)*(n^2 - 11*n + 20)*a(n-4) + 2*(n-6)*(n-5)*(n-4)*(n-3)*(n-2)*a(n-6) - 3*(n-8)*(n-7)*(n-6)*(n-5)*(n-4)*(n-3)*(n-2)*(n^2 - 13*n + 32)*a(n-8) + (n-9)*(n-8)*(n-7)*(n-6)*(n-5)*(n-4)^2*(n-3)*(n-2)*a(n-10) + (n-12)*(n-11)^2*(n-10)*(n-9)*(n-8)*(n-7)*(n-6)*(n-5)*(n-4)^2*(n-3)*(n-2)*a(n-12).
a(n) ~ 2^(-1/6) * 3^(-1/2) * exp(3*2^(-4/3)*n^(1/3) - n) * n^(n - 1/3).
(End)
Showing 1-3 of 3 results.