A373528 Odd numbers k such that k, k+2 and k+4 all have at least two divisors with the same value of the Euler totient function (A000010).
4142435, 26196331, 77118741, 89690821, 102974571, 196054673, 201060275, 206568171, 277322153, 280039833, 401784953, 402492695, 415097613, 437290371, 515636303, 526721895, 534746581, 549806211, 575090395, 580329603, 625833871, 629588043, 702183625, 710983971, 716133481
Offset: 1
Keywords
Links
- Amiram Eldar, Table of n, a(n) for n = 1..100
Programs
-
Mathematica
q[n_] := !UnsameQ @@ EulerPhi[Divisors[n]]; seq[kmax_] := Module[{tri = q /@ {1, 3, 5}, s = {}, k = 7}, While[k < kmax, If[And @@ tri, AppendTo[s, k - 6]]; tri = Join[Rest[tri], {q[k]}]; k+=2]; s]; seq[3*10^7]
-
PARI
is(k) = k>1 && k%2 && numdiv(k) > #Set(apply(x->eulerphi(x), divisors(k))); lista(kmax) = {my(q1 = 0, q2 = 0, q3); forstep(k = 5, kmax, 2, q3 = is(k); if(q1 && q2 && q3, print1(k-4, ", ")); q1 = q2; q2 = q3);}
Comments