cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A373532 a(n) is the least number k such that A373531(k) = n, or -1 if no such k exists.

Original entry on oeis.org

1, 2, 12, 120, 240, 3276, 2520, 10920, 21840, 32760, 65520, 622440, 600600, 900900, 3636360, 1801800, 3603600, 4455360, 22407840, 8910720, 17821440, 51351300, 46060560, 69090840, 92121120, 126977760, 138181680, 380933280, 245044800, 414545040, 490089600, 507911040
Offset: 1

Views

Author

Amiram Eldar, Jun 08 2024

Keywords

Crossrefs

Programs

  • Mathematica
    f[n_] := Max[Tally[EulerPhi[Divisors[n]]][[;; , 2]]]; seq[len_, nmax_] := Module[{s = Table[0, {len}], c = 0, n = 1, i}, While[c < len && n < nmax, i = f[n]; If[i <= len && s[[i]] == 0, c++; s[[i]] = n]; n++]; s]; seq[12, 10^6]
  • PARI
    f(n) = vecmax(matreduce(apply(x->eulerphi(x), divisors(n)))[ , 2]);
    lista(nmax, kmax = oo) = {my(v = vector(nmax), k = 1, c = 0, i); while(c < nmax && k < kmax, i = f(k); if(i <= nmax && v[i] == 0, c++; v[i] = k); k++); v}
    
  • Python
    from collections import Counter
    from itertools import count, islice
    from sympy import divisors, totient
    def agen(): # generator of terms
        adict, n = dict(), 1
        for k in count(1):
            divs = divisors(k)
            if len(divs) < n:
                continue
            c = Counter(totient(d) for d in divs)
            v = c.most_common(1)[0][1]
            if v not in adict:
                adict[v] = k
                while n in adict:
                    yield adict[n]
                    n += 1
    print(list(islice(agen(), 11))) # Michael S. Branicky, Jun 08 2024

Formula

a(n) >= A061799(n).