A373536 Number of ways to form a direct sum decomposition of the vector space GF(2)^n and then choose a basis for each subspace in the decomposition.
1, 1, 9, 364, 61320, 41747328, 113420740608, 1223445790457856, 52307167449899335680, 8861896666997422628536320, 5951934931285476447488997064704, 15857359709817958217841735837828513792, 167702614892018104786663957623269078052372480, 7044769706183185876455816992603242619680927682396160
Offset: 0
Keywords
Links
- David Ellerman, The number of direct-sum decompositions of a finite vector space, arXiv:1603.07619 [math.CO], 2016.
- R. P. Stanley, Exponential structures
Programs
-
Mathematica
nn = 13; B[n_] := Product[q^n - q^i, {i, 0, n - 1}] /. q -> 2; e[x_] := Sum[x^n/B[n], {n, 0, nn}]; f[x_] := Sum[x^n, {n, 0, nn}]; Table[B[n], {n, 0, nn}] CoefficientList[Series[Exp[f[x] - 1], {x, 0, nn}], x]