cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A373537 Decimal expansion of the Euclidean length of the shortest minimum-link polygonal chains joining all the vertices of the cube [0,1]^3.

Original entry on oeis.org

1, 1, 1, 0, 5, 2, 5, 1, 1, 2, 3, 0, 6, 5, 3, 3, 1, 7, 9, 7, 3, 5, 9, 1, 7, 1, 1, 2, 1, 5, 2, 4, 1, 9, 5, 1, 2, 7, 9, 3, 9, 2, 0, 9, 8, 0, 9, 9, 1, 9, 1, 7, 3, 4, 3, 8, 5, 9, 0, 0, 5, 5, 1, 8, 2, 1, 6, 5, 5, 0, 6, 1, 1, 2, 7, 2, 8, 5, 2, 4, 2, 1, 8, 3, 1, 7, 3
Offset: 2

Views

Author

Marco Ripà, Jun 08 2024

Keywords

Comments

It has been proved that it is not possible to join the 8 vertices of a cube with a polygonal chain that has fewer than 6 edges (see Links, Optimal cycles enclosing all the nodes of a k-dimensional hypercube, Theorem 2.2).
Here we consider the additional constraint of minimizing the total (Euclidean) length of the minimum-link polygonal chains (which consist of exactly 6 line segments connected at their endpoints) that join all the vertices of the cube [0,1] X [0,1] X [0,1].
A solution to the above-stated problem is provided by the 6-link polygonal chain (0,0,1)-(0,0,0)-(1+(x+2+sqrt(2))/(2*sqrt(2)(x+sqrt(2))),1+(x+2+sqrt(2))/(2*sqrt(2)(x+sqrt(2))),0)-(1/2,1/2,1+x/sqrt(2))-(- (x+2+sqrt(2))/(2*sqrt(2)(x+sqrt(2))),1+(x+2+sqrt(2))/(2*sqrt(2)(x+sqrt(2))),0)-(1,0,0)-(1,0,1), where x = (1/2)*sqrt((2/3)^(2/3)*((9+sqrt(177)))^(1/3) - 4*(2/(27+3*sqrt(177)))^(1/3)) + (1/2)*sqrt(4*(2/(27+3*sqrt(177)))^(1/3) - (2/3)^(2/3)*(9+sqrt(177))^(1/3) + 4*sqrt(2/((2/3)^(2/3)*(9+sqrt(177))^(1/3) - 4*(2/(27+3*sqrt(177)))^(1/3)))) = 1.597920933550032074764705350780465558827883608091828573735862154752648...
The total (Euclidean) length of the mentioned polygonal chain is about 11.105251123 and this value cannot be beaten by any other 6-link polygonal chain covering all the vertices belonging to the set {0,1} X {0,1} X {0,1} (a nice proof was posted on MathOverflow on June 5, 2024 by a new user, DR.LL, whose profile was subsequently deleted for unknown reasons).

Examples

			11.10525112306533179735917112152419512793920980991917343859...
		

Crossrefs

Programs

  • PARI
    my(x=solve(x=1.5,1.7,4-8*x^2-4*x^4+x^8)); 2 + sqrt(2) + (sqrt(1 + 1/x^2) + 1/x) * (2 + sqrt(2)*x) \\ Hugo Pfoertner, Jun 10 2024

Formula

Equals 2*(1+1/sqrt(2)+((2+sqrt(2)*x)/2)*(1/x+sqrt(1+1/x^2))), where x = (1/2)*sqrt((2/3)^(2/3)*((9+sqrt(177)))^(1/3) - 4*(2/(27+3*sqrt(177)))^(1/3)) + (1/2)*sqrt(4*(2/(27+3*sqrt(177)))^(1/3) - (2/3)^(2/3)*(9+sqrt(177))^(1/3) + 4*sqrt(2/((2/3)^(2/3)*(9+sqrt(177))^(1/3) - 4*(2/(27+3*sqrt(177)))^(1/3)))) = 1.59792093355003207476470...