cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A373557 Irregular triangle read by rows where row n lists (in decreasing order) the elements of the strong Schreier set encoded by A371176(2*n).

Original entry on oeis.org

2, 3, 4, 4, 3, 5, 5, 3, 5, 4, 6, 6, 3, 6, 4, 6, 5, 6, 5, 4, 7, 7, 3, 7, 4, 7, 5, 7, 5, 4, 7, 6, 7, 6, 4, 7, 6, 5, 8, 8, 3, 8, 4, 8, 5, 8, 5, 4, 8, 6, 8, 6, 4, 8, 6, 5, 8, 7, 8, 7, 4, 8, 7, 5, 8, 7, 6, 8, 7, 6, 5, 9, 9, 3, 9, 4, 9, 5, 9, 5, 4, 9, 6, 9, 6, 4, 9, 6, 5
Offset: 1

Views

Author

Paolo Xausa, Jun 09 2024

Keywords

Comments

A strong Schreier set is a subset of the positive integers with cardinality less than the minimum element in the set (see Chu link).
Each term k of 2*A371176 can be put into a one-to-one correspondence with a strong Schreier set by interpreting the 1-based position of the ones in the binary expansion of k (where position 1 corresponds to the least significant bit) as the elements of the corresponding strong Schreier set.
Arranging the elements in each set in decreasing order results in the sets being listed in lexicographical order (see example). Cf. A373579 for the elements arranged in increasing order.
The number of sets having maximum element m is A000045(m-1).

Examples

			Triangle begins:
                                        Corresponding
   n  A371176(2*n)  bin(A371176(2*n))   strong Schreier set
                                        (this sequence)
  ---------------------------------------------------------
   1        2               10          {2}
   2        4              100          {3}
   3        8             1000          {4}
   4       12             1100          {4, 3}
   5       16            10000          {5}       Sets are
   6       20            10100          {5, 3}    lexicographically
   7       24            11000          {5, 4}    ordered
   8       32           100000          {6}
   9       36           100100          {6, 3}
  10       40           101000          {6, 4}
  11       48           110000          {6, 5}
  12       56           111000          {6, 5, 4}
  ...
		

Crossrefs

Subsequence of A373345.
Cf. A000045, A007895 (conjectured row lengths), A371176, A373556, A373579, A373853 (row sums).

Programs

  • Mathematica
    Join[{{2}}, Map[Reverse[PositionIndex[Reverse[IntegerDigits[#, 2]]][1]] &, Select[Range[4, 400, 4], DigitCount[#, 2, 1] < IntegerExponent[#, 2] + 1 &]]]

Formula

T(n,k) = A373345(n,k) + 1.