A373594 Lexicographically earliest infinite sequence such that for all i, j >= 1, a(i) = a(j) => f(i) = f(j), where f(n<=3) = n, f(p) = 0 for primes p > 3, and for composite n, f(n) = [A007814(n), A065339(n), A083025(n), A373591(n), A373592(n)].
1, 2, 3, 4, 5, 6, 5, 7, 8, 9, 5, 10, 5, 11, 12, 13, 5, 14, 5, 15, 16, 17, 5, 18, 19, 20, 21, 22, 5, 23, 5, 24, 25, 9, 26, 27, 5, 11, 28, 29, 5, 30, 5, 31, 32, 17, 5, 33, 34, 35, 12, 36, 5, 37, 38, 39, 16, 9, 5, 40, 5, 11, 41, 42, 43, 44, 5, 15, 25, 45, 5, 46, 5, 20, 47, 22, 48, 49, 5, 50, 51, 9, 5, 52, 19, 11, 12, 53, 5, 54, 55, 31, 16, 17, 26, 56, 5, 57, 58
Offset: 1
Keywords
Links
- Antti Karttunen, Table of n, a(n) for n = 1..100000
Programs
-
PARI
up_to = 100000; rgs_transform(invec) = { my(om = Map(), outvec = vector(length(invec)), u=1); for(i=1, length(invec), if(mapisdefined(om,invec[i]), my(pp = mapget(om, invec[i])); outvec[i] = outvec[pp] , mapput(om,invec[i],i); outvec[i] = u; u++ )); outvec; }; A007814(n) = valuation(n,2); A065339(n) = sum(i=1, #n=factor(n)~, (3==n[1, i]%4)*n[2, i]); A083025(n) = sum(i=1, #n=factor(n)~, (1==n[1, i]%4)*n[2, i]); A373591(n) = sum(i=1, #n=factor(n)~, (1==n[1, i]%3)*n[2, i]); A373592(n) = sum(i=1, #n=factor(n)~, (2==n[1, i]%3)*n[2, i]); Aux373594(n) = if(n<=3, n, if(isprime(n), 0, [A007814(n), A083025(n), A065339(n), A373591(n), A373592(n)])); v373594 = rgs_transform(vector(up_to, n, Aux373594(n))); A373594(n) = v373594[n];
Comments