A373595 Lexicographically earliest infinite sequence such that for all i, j >= 1, a(i) = a(j) => f(i) = f(j), where f(n<=3) = n, f(p) = 0 for primes p > 3, and for composite n, f(n) = [A007949(n), A373591(n), A373592(n)].
1, 2, 3, 4, 5, 6, 5, 7, 8, 4, 5, 9, 5, 10, 6, 11, 5, 12, 5, 7, 13, 4, 5, 14, 4, 10, 15, 16, 5, 9, 5, 17, 6, 4, 10, 18, 5, 10, 13, 11, 5, 19, 5, 7, 12, 4, 5, 20, 21, 7, 6, 16, 5, 22, 4, 23, 13, 4, 5, 14, 5, 10, 24, 25, 10, 9, 5, 7, 6, 16, 5, 26, 5, 10, 9, 16, 10, 19, 5, 17, 27, 4, 5, 28, 4, 10, 6, 11, 5, 18, 21, 7, 13, 4, 10, 29, 5, 30, 12, 11, 5, 9, 5, 23, 19
Offset: 1
Keywords
Links
- Antti Karttunen, Table of n, a(n) for n = 1..100000
Crossrefs
Programs
-
PARI
up_to = 100000; rgs_transform(invec) = { my(om = Map(), outvec = vector(length(invec)), u=1); for(i=1, length(invec), if(mapisdefined(om,invec[i]), my(pp = mapget(om, invec[i])); outvec[i] = outvec[pp] , mapput(om,invec[i],i); outvec[i] = u; u++ )); outvec; }; A007949(n) = valuation(n,3); A373591(n) = sum(i=1, #n=factor(n)~, (1==n[1, i]%3)*n[2, i]); A373592(n) = sum(i=1, #n=factor(n)~, (2==n[1, i]%3)*n[2, i]); Aux373595(n) = if(n<=3, n, if(isprime(n), 0, [A007949(n), A373591(n), A373592(n)])); v373595 = rgs_transform(vector(up_to, n, Aux373595(n))); A373595(n) = v373595[n];
Comments