cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A373620 Expansion of e.g.f. exp(x / (1 - x^2)^2).

Original entry on oeis.org

1, 1, 1, 13, 49, 481, 3841, 38221, 464353, 5368609, 82042561, 1151767981, 20242097041, 342921513793, 6705416722369, 133590317946541, 2880298682358721, 65597610230669761, 1556262483879791233, 39569880403136366029, 1030778206965403668721
Offset: 0

Views

Author

Seiichi Manyama, Jun 11 2024

Keywords

Crossrefs

Programs

  • Maple
    A373620 := proc(n)
        add(binomial(2*n-3*k-1,k)/(n-2*k)!,k=0..floor(n/2)) ;
        %*n! ;
    end proc:
    seq(A373620(n),n=0..80) ; # R. J. Mathar, Jun 11 2024
  • PARI
    a(n) = n!*sum(k=0, n\2, binomial(2*n-3*k-1, k)/(n-2*k)!);

Formula

a(n) = n! * Sum_{k=0..floor(n/2)} binomial(2*n-3*k-1,k)/(n-2*k)!.
a(n) == 1 mod 12.
a(n) ~ 2^(-1/6) * 3^(-1/2) * exp(1/48 + 2^(-5/3)*n^(1/3) + 3*2^(-4/3)*n^(2/3) - n) * n^(n - 1/6). - Vaclav Kotesovec, Jun 11 2024
D-finite with recurrence a(n) -a(n-1) -3*(n-1)*(n-2)*a(n-2) -3*(n-1)*(n-2)*a(n-3) +3*(n-1)*(n-2)*(n-3)*(n-4)*a(n-4) -(n-1)*(n-2)*(n-3)*(n-4)*(n-5)*(n-6)*a(n-6)=0. - R. J. Mathar, Jun 11 2024

A373668 Expansion of e.g.f. exp(x / (1 - x^2)^3).

Original entry on oeis.org

1, 1, 1, 19, 73, 901, 7921, 88831, 1261009, 15786793, 284515201, 4359416491, 88359404761, 1671036171949, 36734936604913, 831051144091351, 19848996799904161, 516144198653004241, 13522792578340917889, 391107276466207593283, 11295497154349628317801
Offset: 0

Views

Author

Seiichi Manyama, Jun 13 2024

Keywords

Crossrefs

Programs

  • PARI
    a(n) = n!*sum(k=0, n\2, binomial(3*n-5*k-1, k)/(n-2*k)!);

Formula

a(n) = n! * Sum_{k=0..floor(n/2)} binomial(3*n-5*k-1,k)/(n-2*k)!.
a(n) == 1 (mod 18).

A373667 Expansion of e.g.f. exp(x / (1 - x^2)^(5/2)).

Original entry on oeis.org

1, 1, 1, 16, 61, 676, 5701, 60376, 798841, 9635536, 160878601, 2367914176, 44902245301, 807083463616, 16799688310861, 358223448539776, 8158048770370801, 199405713714155776, 4987832102850957841, 135848995301247809536, 3737769145322321702701
Offset: 0

Views

Author

Seiichi Manyama, Jun 13 2024

Keywords

Crossrefs

Programs

  • PARI
    a(n) = n!*sum(k=0, n\2, binomial(5*n/2-4*k-1, k)/(n-2*k)!);

Formula

a(n) = n! * Sum_{k=0..floor(n/2)} binomial(5*n/2-4*k-1,k)/(n-2*k)!.
a(n) == 1 (mod 15).
Showing 1-3 of 3 results.