A373547 Triangle read by rows: T(n,k) = 4^k*binomial(n+k, n-k) with 0 <= k <= n.
1, 1, 4, 1, 12, 16, 1, 24, 80, 64, 1, 40, 240, 448, 256, 1, 60, 560, 1792, 2304, 1024, 1, 84, 1120, 5376, 11520, 11264, 4096, 1, 112, 2016, 13440, 42240, 67584, 53248, 16384, 1, 144, 3360, 29568, 126720, 292864, 372736, 245760, 65536, 1, 180, 5280, 59136, 329472, 1025024, 1863680, 1966080, 1114112, 262144
Offset: 0
Examples
The triangle begins as: 1; 1, 4; 1, 12, 16; 1, 24, 80, 64; 1, 40, 240, 448, 256; 1, 60, 560, 1792, 2304, 1024; 1, 84, 1120, 5376, 11520, 11264, 4096; ... T(2,1) = 12 since there are 12 occurrences of (01)^1 = 01 in (0011)^2 = 00110011: {1, 3}, {1, 4}, {1, 7}, {1, 8}, {2, 3}, {2, 4}, {2, 7}, {2, 8}, {5, 7}, {5, 8}, {6, 7}, {6, 8}.
Links
- Wenjie Fang, Maximal number of subword occurrences in a word, arXiv:2406.02971 [math.CO], 2024.
Crossrefs
Programs
-
Mathematica
T[n_,k_]:=4^k Binomial[n+k,n-k]; Table[T[n,k],{n,0,9},{k,0,n}]//Flatten (* or *) T[n_,k_]:=SeriesCoefficient[(1-x)/((1-x)^2-4x y),{x,0,n},{y,0,k}]; Table[T[n,k],{n,0,9},{k,0,n}]//Flatten
Comments