A373657 Triangle read by rows: Coefficients of the polynomials P(n, x) * EP(n, x), where P denote the signed Pascal polynomials and EP the Eulerian polynomials A173018.
1, -1, 1, 1, -1, -1, 1, -1, -1, 8, -8, 1, 1, 1, 7, -27, 19, 19, -27, 7, 1, -1, -21, 54, 54, -276, 276, -54, -54, 21, 1, 1, 51, -25, -675, 1650, -1002, -1002, 1650, -675, -25, 51, 1, -1, -113, -372, 3436, -5125, -5013, 21216, -21216, 5013, 5125, -3436, 372, 113, 1
Offset: 0
Examples
Triangle starts: [0] [ 1] [1] [-1, 1] [2] [ 1, -1, -1, 1] [3] [-1, -1, 8, -8, 1, 1] [4] [ 1, 7, -27, 19, 19, -27, 7, 1] [5] [-1, -21, 54, 54, -276, 276, -54, -54, 21, 1] [6] [ 1, 51, -25, -675, 1650, -1002, -1002, 1650, -675, -25, 51, 1]
Links
- S. Tanimoto, A new approach to signed Eulerian numbers, arXiv:math/0602263 [math.CO], 2006. (see p. 7)
Programs
-
Maple
PolyProd := proc(P, Q, len) local ep, eq, epq, CL, n, k; ep := (n, x) -> simplify(add(Q(n, k)*x^k, k = 0..n)): eq := (n, x) -> simplify(add(P(n, k)*x^k, k = 0..n)): epq := (n, x) -> expand(ep(n, x) * eq(n, x)): CL := p -> PolynomialTools:-CoefficientList(p, x); seq(CL(epq(n, x)), n = 0..len); ListTools:-Flatten([%]) end: PolyProd((n, k) -> (-1)^(n-k)*binomial(n, k), combinat:-eulerian1, 7);