cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A373570 Triangle read by rows: Coefficients of the polynomials S1(n, x) * EP(n, x), where S1 denote the unsigned Stirling cycle polynomials A132393 and EP the Eulerian polynomials A173018.

Original entry on oeis.org

1, 0, 1, 0, 1, 2, 1, 0, 2, 11, 15, 7, 1, 0, 6, 77, 193, 194, 88, 17, 1, 0, 24, 674, 2919, 4844, 3895, 1646, 361, 36, 1, 0, 120, 7114, 52083, 131898, 162398, 110214, 43356, 9902, 1242, 72, 1, 0, 720, 88164, 1070824, 4036059, 7141903, 7007314, 4133290, 1519960, 350176, 49162, 3886, 141, 1
Offset: 0

Views

Author

Peter Luschny, Jun 16 2024

Keywords

Examples

			Triangle starts:
[0] [1]
[1] [0,  1]
[2] [0,  1,   2,    1]
[3] [0,  2,  11,   15,    7,    1]
[4] [0,  6,  77,  193,  194,   88,   17,   1]
[5] [0, 24, 674, 2919, 4844, 3895, 1646, 361, 36, 1]
		

Crossrefs

Cf. A173018, A132393, A000142, A373657, A001044 (row sums).

Programs

  • Maple
    PolyProd(((n, k) -> abs(Stirling1(n, k))), combinat:-eulerian1, 7); # Using PolyProd from A373657.

A373571 Triangle read by rows: Coefficients of the polynomials S2(n, x) * EP(n, x), where S2 denote the Stirling set polynomials and EP the Eulerian polynomials A173018.

Original entry on oeis.org

1, 0, 1, 0, 1, 2, 1, 0, 1, 7, 14, 7, 1, 0, 1, 18, 94, 145, 84, 17, 1, 0, 1, 41, 481, 1676, 2302, 1351, 351, 36, 1, 0, 1, 88, 2159, 14859, 40319, 49434, 29378, 8627, 1222, 72, 1, 0, 1, 183, 9052, 113919, 554030, 1236040, 1380913, 816404, 260968, 44577, 3851, 141, 1
Offset: 0

Views

Author

Peter Luschny, Jun 15 2024

Keywords

Examples

			Triangle starts:
[0] [1]
[1] [0, 1]
[2] [0, 1,  2,    1]
[3] [0, 1,  7,   14,     7,     1]
[4] [0, 1, 18,   94,   145,    84,    17,     1]
[5] [0, 1, 41,  481,  1676,  2302,  1351,   351,   36,    1]
[6] [0, 1, 88, 2159, 14859, 40319, 49434, 29378, 8627, 1222, 72, 1]
		

Crossrefs

Programs

  • Maple
    PolyProd(Stirling2, combinat:-eulerian1, 7);  # Using PolyProd from A373657.

A373572 Triangle read by rows: Coefficients of the polynomials P(n, x) * EZ(n, x), where P denote the signed Pascal polynomials and EZ the Eulerian zig-zag polynomials A205497.

Original entry on oeis.org

1, -1, 1, 1, -2, 1, -1, 2, 0, -2, 1, 1, -1, -5, 10, -5, -1, 1, -1, -2, 18, -26, 0, 26, -18, 2, 1, 1, 8, -38, 18, 117, -212, 117, 18, -38, 8, 1, -1, -19, 52, 143, -677, 818, 0, -818, 677, -143, -52, 19, 1, 1, 38, -6, -817, 2196, -722, -5071, 8762, -5071, -722, 2196, -817, -6, 38, 1
Offset: 0

Views

Author

Peter Luschny, Jun 15 2024

Keywords

Examples

			Triangle starts:
  [0] [1]
  [1] [-1,   1]
  [2] [ 1,  -2,   1]
  [3] [-1,   2,   0,  -2,    1]
  [4] [ 1,  -1,  -5,  10,   -5,   -1,   1]
  [5] [-1,  -2,  18, -26,    0,   26, -18,    2,   1]
  [6] [ 1,   8, -38,  18,  117, -212, 117,   18, -38,    8,   1]
  [7] [-1, -19,  52, 143, -677,  818,   0, -818, 677, -143, -52, 19, 1]
		

Crossrefs

Cf. A373432, A205497, A373657, A000007 (row sums).

Programs

  • Maple
    EZP((n, k) -> (-1)^(n-k)*binomial(n, k), 8);  # Using function EZP from A373432.
Showing 1-3 of 3 results.