cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A373703 a(n) = A062760(n)*A066636(n).

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 6, 1, 1, 1, 1, 1, 6, 1, 10, 1, 1, 1, 36, 1, 1, 1, 14, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 100, 1, 1, 1, 22, 15, 1, 1, 216, 1, 10, 1, 26, 1, 36, 1, 196, 1, 1, 1, 30, 1, 1, 21, 1, 1, 1, 1, 34, 1, 1, 1, 6, 1, 1, 15, 38, 1, 1, 1, 1000
Offset: 1

Views

Author

David James Sycamore, Jun 13 2024

Keywords

Comments

If n has unequal prime exponents (a term in A059404), then a(n) > 1; otherwise a(n) = 1.

Examples

			a(12) = A062760(12)*A066636(12) = 2*3 = 6.
a(45) = A062760(45)*A066636(45) = 3*5 = 15.
		

Crossrefs

Programs

  • Mathematica
    Table[Function[{r, s}, r^(Max[s] - Min[s])] @@ {Times @@ #[[All, 1]], #[[All, -1]]} &@ FactorInteger[n], {n, 120}] (* Michael De Vlieger, Jun 13 2024 *)
  • PARI
    a(n) = if (n==1, 1, my(f=factor(n)); (factorback(f[, 1]))^(vecmax(f[,2])-vecmin(f[,2]))); \\ Michel Marcus, Jun 14 2024

Formula

For n > 1, a(n) = A007947(n)^k where k is the difference between the greatest and least exponents in the prime power factorization of n.