cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A373706 Expansion of 1/(1 - x * (1 + x^4)^2).

Original entry on oeis.org

1, 1, 1, 1, 1, 3, 5, 7, 9, 12, 19, 30, 45, 64, 91, 134, 201, 300, 440, 641, 939, 1386, 2050, 3021, 4437, 6516, 9588, 14128, 20811, 30624, 45042, 66268, 97545, 143604, 211368, 311040, 457704, 673605, 991437, 1459215, 2147563, 3160516, 4651330, 6845572, 10075042
Offset: 0

Views

Author

Seiichi Manyama, Jun 14 2024

Keywords

Crossrefs

Programs

  • PARI
    a(n) = sum(k=0, 2*n\9, binomial(2*n-8*k, k));

Formula

a(n) = a(n-1) + 2*a(n-5) + a(n-9) for n > 8.
a(n) = Sum_{k=0..floor(2*n/9)} binomial(2*n-8*k,k).
a(n) = A005711(2*n-1) for n > 0.

A373707 Expansion of e.g.f. exp(x * (1 + x^3)^2).

Original entry on oeis.org

1, 1, 1, 1, 49, 241, 721, 6721, 124321, 913249, 4243681, 94818241, 1640604241, 14642181841, 131026944049, 3669304504321, 62536989802561, 627395160826561, 10818406189690561, 308036857749752449, 5219006583104930161, 65146235714284117681
Offset: 0

Views

Author

Seiichi Manyama, Jun 14 2024

Keywords

Crossrefs

Programs

  • PARI
    a(n) = n!*sum(k=0, 2*n\7, binomial(2*n-6*k, k)/(n-3*k)!);

Formula

a(n) = n! * Sum_{k=0..floor(2*n/7)} binomial(2*n-6*k,k)/(n-3*k)!.
a(n) == 1 (mod 48).
a(n) = a(n-1) + 8*(n-1)*(n-2)*(n-3)*a(n-4) + 7*(n-1)*(n-2)*(n-3)*(n-4)*(n-5)*(n-6)*a(n-7).
Showing 1-2 of 2 results.