A373710 Triangle read by rows: T(n,k) is the area of the square whose vertices divide the sides n of a circumscribed square into integer sections k and n - k, 0 <= k <= floor(n/2).
0, 1, 4, 2, 9, 5, 16, 10, 8, 25, 17, 13, 36, 26, 20, 18, 49, 37, 29, 25, 64, 50, 40, 34, 32, 81, 65, 53, 45, 41, 100, 82, 68, 58, 52, 50, 121, 101, 85, 73, 65, 61, 144, 122, 104, 90, 80, 74, 72, 169, 145, 125, 109, 97, 89, 85, 196, 170, 148, 130, 116, 106, 100, 98
Offset: 0
Examples
Triangle T(n,k) begins: n\k 0 1 2 3 4 5 6 7 ... 0 0 1 1 2 4 2 3 9 5 4 16 10 8 5 25 17 13 6 36 26 20 18 7 49 37 29 25 8 64 50 40 34 32 9 81 65 53 45 41 10 100 82 68 58 52 50 11 121 101 85 73 65 61 12 144 122 104 90 80 74 72 13 169 145 125 109 97 89 85 14 196 170 148 130 116 106 100 98 ...
Links
- Felix Huber, Table of n, a(n) for n = 0..100000
- Felix Huber, Square in square
Crossrefs
Formula
T(n,k) = n^2 + 2*k^2 - 2*n*k, 0 <= k <= floor(n/2).
Sequence of row n = r: a(i) = 2*i^2 - 4*i - 2*r*i + r^2 + 2*r + 2, 1 <= i <= floor(r/2 + 1).
Sequence of column k = c: a(j) = j^2 - 2*j + 2*c*j + 2*c^2 - 2*c + 1, j >= 1.
Comments