A373736 a(n) = largest nondivisor k < n such that A007947(k) | n, or 0 if k does not exist.
0, 0, 0, 0, 0, 4, 0, 0, 0, 8, 0, 9, 0, 8, 9, 0, 0, 16, 0, 16, 9, 16, 0, 18, 0, 16, 0, 16, 0, 27, 0, 0, 27, 32, 25, 32, 0, 32, 27, 32, 0, 36, 0, 32, 27, 32, 0, 36, 0, 40, 27, 32, 0, 48, 25, 49, 27, 32, 0, 54, 0, 32, 49, 0, 25, 64, 0, 64, 27, 64, 0, 64, 0, 64, 45
Offset: 1
Keywords
Examples
Let rad = A007947 and let S(n) = {k <= n : rad(k) | n}, i.e., row n of A162306. a(6) = 4 since 4 is the largest nondivisor k in S(6) = {1, 2, 3, 4, 6}. a(10) = 8 since 8 is the largest nondivisor k in S(10) = {1, 2, 4, 5, 8, 10}. a(15) = 9 since 9 is the largest nondivisor k in S(15) = {1, 3, 5, 9, 15}, etc.
Links
- Michael De Vlieger, Table of n, a(n) for n = 1..10000
- Michael De Vlieger, Scalar scatterplot of a(n) for n = 1..2^20.
- Michael De Vlieger, Plot a(n) at (x,y) = (n mod 210, -floor(n/210)) for n = 1..44100, showing 0 in light gray, perfect prime powers (a(n) in A246547) in gold, a(n) in A332785 in blue, and a(n) in A286708 in magenta.
Programs
-
Mathematica
rad[x_] := rad[x] = Times @@ FactorInteger[x][[All, 1]]; Table[If[PrimePowerQ[n], 0, k = n - 1; Until[And[Divisible[n, rad[k]], ! Divisible[n, k]], k--]; k], {n, 2, 120}]
-
PARI
rad(n) = factorback(factorint(n)[, 1]); a(n) = forstep(k=n-1, 1, -1, if ((n % k) && !(n % rad(k)), return(k))); \\ Michel Marcus, Jun 18 2024
Comments