cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A373744 Triangle read by rows: the almost-Riordan array ( 1/(1-x) | 2/((1-x)*(1+sqrt(1-4*x))), (1-2*x-sqrt(1-4*x))/(2*x) ).

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 1, 4, 4, 1, 1, 9, 13, 6, 1, 1, 23, 41, 26, 8, 1, 1, 65, 131, 101, 43, 10, 1, 1, 197, 428, 376, 197, 64, 12, 1, 1, 626, 1429, 1377, 834, 337, 89, 14, 1, 1, 2056, 4861, 5017, 3382, 1597, 529, 118, 16, 1, 1, 6918, 16795, 18277, 13378, 7105, 2773, 781, 151, 18, 1
Offset: 0

Views

Author

Stefano Spezia, Jun 16 2024

Keywords

Examples

			The triangle begins as:
  1;
  1,   1;
  1,   2,   1;
  1,   4,   4,   1;
  1,   9,  13,   6,   1;
  1,  23,  41,  26,   8,  1;
  1,  65, 131, 101,  43, 10,  1;
  1, 197, 428, 376, 197, 64, 12, 1;
  ...
		

Crossrefs

Cf. A000012 (k=0 and n=k), A001453 (k=2), A004275 (subdiagonal), A014137, A091823, A143955 (k=3).

Programs

  • Mathematica
    T[n_, 0]:=1; T[n_, k_]:=SeriesCoefficient[2/((1-x)(1+Sqrt[1-4x]))((1-2x-Sqrt[1-4x])/(2x))^(k-1), {x, 0, n-1}]; Table[T[n, k], {n, 0, 10}, {k, 0, n}]//Flatten

Formula

T(n,1) = A014137(n-1).
T(n,n-2) = A091823(n-1) for n > 2.