A373760 Number of noncrossing partitions of the n-set including a part containing both 1 and n (with n different from 1), with no pair of singletons {i} and {j} that can be merged into {i,j} and leave the partition a noncrossing partition.
0, 0, 1, 2, 4, 11, 30, 88, 266, 825, 2613, 8408, 27421, 90422, 300987, 1010008, 3413027, 11604237, 39668334, 136258178, 470060495, 1627913941, 5657649569, 19725571728, 68975054956, 241834515725, 849993720642, 2994348927858, 10570741932441, 37390372928207, 132497284947463
Offset: 0
Keywords
Examples
For n=3, the a(3)=2 partitions are {{1,3},{2}} and {{1,2,3}}. For n=4, the a(4)=4 partitions are {{1,4},{2,3}}, {{1,2,4},{3}}, {{1,3,4},{2}} and {{1,2,3,4}}.
Links
- Julien Rouyer, Table of n, a(n) for n = 0..47
Crossrefs
Programs
-
Sage
t, P, Q = var('t, P, Q') P = Q / ( 1 - Q ) + t / ( 1 - Q )^2 + 1 solQ=solve([Q == t / (1 - t * P) - t],Q) q=solQ[1].rhs() n = 47 DL_Q = (taylor(q, t,0,n)).simplify_full() Qn = DL_Q.list() # Julien Rouyer, Wenjie Fang, and Alain Ninet, Jun 17 2024
Formula
With P the generating function of A363448, the generating function Q of (a(n)) is a solution of the system of two equations
P(t)=Q(t)/(1-Q(t))+t/(1-Q(t))^2+1
Q(t)=t/(1-tP(t))-t.