Julien Rouyer has authored 5 sequences.
A373760
Number of noncrossing partitions of the n-set including a part containing both 1 and n (with n different from 1), with no pair of singletons {i} and {j} that can be merged into {i,j} and leave the partition a noncrossing partition.
Original entry on oeis.org
0, 0, 1, 2, 4, 11, 30, 88, 266, 825, 2613, 8408, 27421, 90422, 300987, 1010008, 3413027, 11604237, 39668334, 136258178, 470060495, 1627913941, 5657649569, 19725571728, 68975054956, 241834515725, 849993720642, 2994348927858, 10570741932441, 37390372928207, 132497284947463
Offset: 0
For n=3, the a(3)=2 partitions are {{1,3},{2}} and {{1,2,3}}.
For n=4, the a(4)=4 partitions are {{1,4},{2,3}}, {{1,2,4},{3}}, {{1,3,4},{2}} and {{1,2,3,4}}.
Cf.
A363448 (lonely singles partitions),
A363449 (marriageable singles partitions),
A000108 (noncrossing partitions).
-
t, P, Q = var('t, P, Q')
P = Q / ( 1 - Q ) + t / ( 1 - Q )^2 + 1
solQ=solve([Q == t / (1 - t * P) - t],Q)
q=solQ[1].rhs()
n = 47
DL_Q = (taylor(q, t,0,n)).simplify_full()
Qn = DL_Q.list()
# Julien Rouyer, Wenjie Fang, and Alain Ninet, Jun 17 2024
A372342
Number of noncrossing partitions of [n] that contain exactly one singleton.
Original entry on oeis.org
0, 1, 0, 3, 4, 15, 36, 105, 288, 819, 2320, 6633, 19020, 54769, 158172, 458055, 1329552, 3867075, 11267856, 32884953, 96111900, 281267469, 824083260, 2417052267, 7096175856, 20852160525, 61324675776, 180488550375, 531581605828, 1566658748079, 4620016882740, 13632008884201, 40244583972480
Offset: 0
For n=3 the a(3)=3 partitions with exactly one singleton are {{12},{3}}, {{13},{2}}, and {{1},{23}}.
-
a:= proc(n) option remember; `if`(n<2, n,
2*(n-2)*a(n-1)/(n-1)+3*a(n-2))
end:
seq(a(n), n=0..32); # Alois P. Heinz, Jun 25 2024
-
a[n_]:=Sum[Binomial[n, m-1]*Binomial[n-m-1, m-2], {m, Floor[(n+1)/2]}]; Array[a,30,0] (* Stefano Spezia, Apr 28 2024 *)
a[n_] := (-1)^(1 - n) n Hypergeometric2F1[1 - n, 1/2, 2, 4];
Table[a[n], {n, 0, 32}] (* Peter Luschny, Jun 25 2024 *)
-
seq = [0,1]
for n in range(2,20):
up = (n+1) // 2
s = 0
for m in range(1,up+1):
s += binomial(n,m-1) * binomial(n-m-1,m-2)
seq.append(s)
A362137
Smallest size of an n-paradoxical tournament built as a directed Paley graph.
Original entry on oeis.org
1, 3, 7, 19, 67, 331, 1163
Offset: 0
For n=1, a(1)=3 vertices, each one being the predecessor of exactly one of the other two.
For n=2, a(2)=7 vertices named 0,1,2,3,4,5,6, each vertex x being the predecessor of vertices x+1, x+2, x+4 mod 7.
For n=3, a(3)=19 vertices named 0,1,2,...,18, each vertex x being the predecessor of vertices x+1, x+4, x+5, x+6, x+7, x+9, x+11, x+16, x+17 mod 19.
- P. Erdős, On a Problem in Graph Theory, The Mathematical Gazette, 47.361 (1963), 220-223.
- R. L. Graham and J. H. S. Spencer, A Constructive Solution to a Tournament Problem, Canadian Mathematical Bulletin 14.1, (1971), 45-48.
- K. B. Reid and A. A. McRae and S.M. Hedetniemi and S. T. Hedetniemi, Domination and irredundance in tournaments, Australas. J Comb., 29 (2004), 157-172.
- E. Szekeres and G. Szekeres, On a Problem of Schütte and Erdős, The Mathematical Gazette 49.369 (1965), 290-293.
A363449
Number of noncrossing partitions of the n-set with some pair of singletons {i} and {j} that can be merged into {i,j} and leave the partition a noncrossing-partition.
Original entry on oeis.org
0, 0, 1, 1, 5, 16, 55, 197, 705, 2563, 9381, 34563, 128029, 476347, 1779107, 6666752, 25054585, 94401460, 356510371, 1349182629, 5115555725, 19429832443, 73916249353, 281613780638, 1074400168957, 4104279704526, 15697542046005, 60106182177517, 230394256650275, 884024296630081, 3395269379129779
Offset: 0
The 5 noncrossing partitions of the 4-set {1234} with some pair of singletons that can be merged and leave the partition a noncrossing-partition are [{1},{2},{3},{4}], [{12},{3},{4}], [{1},{23},{4}], [{2},{3},{14}], [{1},{2},{34}].
[{1},{23},{4}] can give [{14},{23}].
A363448
Number of noncrossing partitions of the n-set with no pair of singletons {i} and {j} that can be merged into {i,j} and leave the partition a noncrossing partition.
Original entry on oeis.org
1, 1, 1, 4, 9, 26, 77, 232, 725, 2299, 7415, 24223, 79983, 266553, 895333, 3028093, 10303085, 35243330, 121128329, 418080561, 1448564695, 5036434577, 17566314287, 61445833012, 215503978367, 757666696926, 2669811026147, 9427368738487, 33353695100085, 118217920021287
Offset: 0
The a(4)=9 noncrossing partitions of the 4-set {1,2,3,4} with no pair of singletons that can be merged (so that we still have a noncrossing partition) are [{1234}], [{12},{34}], [{23},{14}], [{4},{123}], [{3},{124}], [{2},{134}], [{1},{234}], [{13},{2},{4}], [{24},{1},{3}].
-
def join_singles(sp, i, j):
spl = [e for e in list(sp) if i not in e and j not in e]
spl.append(frozenset([i, j]))
return SetPartition(spl)
def get_singles(sp):
return [list(e)[0] for e in sp if len(e) == 1]
def is_single_unjoinable(sp):
sgl = get_singles(sp)
k = len(sgl)
for i in range(k):
for j in range(i + 1, k):
if join_singles(sp, sgl[i], sgl[j]).is_noncrossing():
return False
return True
def count_single_unjoinable(n):
accu = 0
res = []
for dw in DyckWords(n):
sp = dw.to_noncrossing_partition()
if is_single_unjoinable(sp):
accu += 1
res += sp
return accu, res
[count_single_unjoinable(n) for n in range(15)]
# Julien Rouyer and Wenjie Fang, Apr 05 2024
-
t, P, Q = var('t, P, Q')
Q=t/(1-t*P)-t
sol=solve([P==Q/(1-Q)+t/(1-Q)^2+1],P)
f=sol[1].rhs() # the generating function of the lonely singles sequence (Ln) is this solution of the cubic equation solved above (coefficients depend on t)
n = 30 # change n to obtain more terms of the formal power series
(taylor(f, t,0,n)).simplify_full()
# Julien Rouyer, Wenjie Fang, and Alain Ninet, Apr 23 2024
Comments