cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A373764 Odd composite numbers k such that A086615(k-1) == 2*(-1)^((k-1)/2) (mod k).

Original entry on oeis.org

369, 441, 4473, 10609, 292559
Offset: 1

Views

Author

Amiram Eldar, Jun 18 2024

Keywords

Comments

The congruence holds for all odd primes.
a(6) > 2.3*10^7, if it exists.

Crossrefs

Cf. A086615.

Programs

  • Mathematica
    seq[kmax_] := Module[{s0 = 1, s1 = 2, s2 = 4, s3, s = {}}, Do[s3 = (3*(k+1)*s2 + (k-4)*s1 - 3*(k-1)*s0)/(k+2); If[EvenQ[k] && !PrimeQ[k+1] && Divisible[s3 - 2*(-1)^(k/2), k+1], AppendTo[s, k+1]]; s0 = s1; s1 = s2; s2 = s3, {k, 3, kmax}]; s]; seq[500]
  • PARI
    lista(kmax) = {my(s0 = 1, s1 = 2, s2 = 4, s3); for(k = 3, kmax, s3 = (3*(k+1)*s2 + (k-4)*s1 - 3*(k-1)*s0)/(k+2); if(!(k % 2) && !isprime(k+1) && !((s3 - 2*(-1)^(k/2)) % (k+1)), print1(k+1, ", ")); s0 = s1; s1 = s2; s2 = s3);}