cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A373862 Decimal expansion of Sum_{k >= 1} log(k)/(k*sqrt(k+1)).

Original entry on oeis.org

3, 7, 7, 1, 0, 0, 9, 4, 9, 1, 4, 0, 0, 9, 2, 3, 2, 2, 6, 0, 7, 9, 0, 8, 1, 1, 3, 7, 6, 7, 7, 3, 3, 8, 4, 1, 2, 4, 3, 5, 0, 9, 3, 6, 9, 9, 8, 4, 2, 2, 3, 1, 9, 0, 7, 3, 0, 0, 0, 9, 4, 4, 5, 9, 5, 9, 1, 8, 9, 2, 3, 5, 5, 0, 5, 6, 2, 1, 7, 4, 2, 9, 2, 2, 9, 0, 5, 2, 2, 9, 5, 7, 1, 7, 9, 9, 3, 6, 0, 5, 6, 7, 4, 6, 3
Offset: 1

Views

Author

R. J. Mathar, Jun 19 2024

Keywords

Examples

			3.77100949140092...
		

Crossrefs

Cf. A131688.

Programs

  • Maple
    Digits := 120 ;
    x := 0.0 ;
    for l from 0 to 600 do
        x := x+(-1)^(l+1)*doublefactorial(2*l-1)/doublefactorial(2*l)*Zeta(1,3/2+l) ;
        x := evalf(x) ;
        print(x) ;
    end do: # R. J. Mathar, Jun 27 2024
  • PARI
    default(realprecision, 200); sumalt(k=0, (-1)^(k+1) * (2*k)! * zeta'(k+3/2) / (k!^2 * 4^k)) \\ Vaclav Kotesovec, Jun 27 2024

Formula

Equals sum_{l>=0} (-1)^(l+1) (2l-1)!! *Zeta'(3/2+l) /(2l)!!.

Extensions

More terms from Vaclav Kotesovec, Jun 27 2024