A373892 a(n) is the smallest number that can be partitioned in exactly n ways as the sum of two Duffinian numbers (A003624).
1, 8, 25, 43, 84, 71, 102, 160, 150, 219, 226, 196, 244, 350, 328, 300, 330, 354, 400, 386, 448, 408, 434, 390, 510, 536, 462, 546, 570, 624, 608, 740, 722, 690, 714, 770, 726, 660, 750, 804, 842, 858, 876, 870, 932, 914, 924, 840, 986, 1038, 966, 1108, 1050, 1056
Offset: 0
Keywords
Examples
1 cannot be written as the sum of two Duffinian numbers, so a(0) = 1. The numbers from 2 to 7 cannot be written as the sum of two Duffinian numbers and 8 = 4 + 4 = A003624(1) + A003624(1), so a(1) = 8. 25 = 4 + 21 = 9 + 16 and 4 = A003624(1), 9 = A003624(3), 16 = A003624(4), 21 = A003624(5) and the numbers 9 to 24 cannot be written in two ways as a sum of two Duffinian numbers. Thus a(2) = 25.
Crossrefs
Cf. A003624.
Programs
-
Magma
f:=func
; b:=[n: n in [1..2000] |f(n)]; a:=[]; for n in [0..60] do k:=1; while #RestrictedPartitions(k,2,Set(b)) ne n do k:=k+1; end while; Append(~a,k); end for; a; -
Mathematica
dufQ[n_] := CompositeQ[n] && CoprimeQ[n, DivisorSigma[1, n]]; f[n_] := Sum[If[dufQ[k] && dufQ[n - k], 1, 0], {k, 1, Floor[n/2]}]; seq[len_, nmax_] := Module[{s = Table[0, {len}], c = 0, n = 1, i}, While[c < len && n < nmax, i = f[n] + 1; If[i <= len && s[[i]] == 0, c++; s[[i]] = n]; n++]; s]; seq[54, 2000] (* Amiram Eldar, Jul 19 2024 *)