cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A371125 Number of compositions of 6*n into parts 1 and 6.

Original entry on oeis.org

1, 2, 9, 43, 196, 882, 3970, 17887, 80608, 363254, 1636944, 7376591, 33241289, 149795989, 675029164, 3041899638, 13707783053, 61771701389, 278363253873, 1254394801761, 5652708454881, 25472931513057, 114789263420590, 517277526141329, 2331019740675071
Offset: 0

Views

Author

Seiichi Manyama, Jun 22 2024

Keywords

Crossrefs

Programs

  • PARI
    a(n) = sum(k=0, n, binomial(n+5*k, n-k));

Formula

a(n) = A005708(6*n).
a(n) = Sum_{k=0..n} binomial(n+5*k,n-k).
a(n) = 7*a(n-1) - 15*a(n-2) + 20*a(n-3) - 15*a(n-4) + 6*a(n-5) - a(n-6).
G.f.: 1/(1 - x - x/(1 - x)^5).

A373904 a(n) = Sum_{k=0..floor(n/2)} binomial(n+4*k,n-2*k).

Original entry on oeis.org

1, 1, 2, 8, 30, 98, 303, 937, 2936, 9260, 29209, 91999, 289547, 911255, 2868341, 9029425, 28424456, 89478064, 281667368, 886657848, 2791106585, 8786123349, 27657838272, 87064092870, 274068969337, 862741412709, 2715822822365, 8549136056237, 26911817257385
Offset: 0

Views

Author

Seiichi Manyama, Jun 22 2024

Keywords

Crossrefs

Programs

  • PARI
    a(n) = sum(k=0, n\2, binomial(n+4*k,n-2*k));

Formula

a(n) = 6*a(n-1) - 14*a(n-2) + 20*a(n-3) - 15*a(n-4) + 6*a(n-5) - a(n-6).
G.f.: 1/(1 - x - x^2/(1 - x)^5).

A373906 a(n) = Sum_{k=0..floor(n/4)} binomial(n+2*k,n-4*k).

Original entry on oeis.org

1, 1, 1, 1, 2, 8, 29, 85, 212, 476, 1016, 2172, 4825, 11213, 26763, 64095, 151851, 354737, 820328, 1889968, 4361521, 10106859, 23509678, 54793282, 127709888, 297336790, 691382201, 1606284377, 3731020629, 8668253125, 20146856893, 46840732201, 108918637566, 253262275888
Offset: 0

Views

Author

Seiichi Manyama, Jun 22 2024

Keywords

Crossrefs

Programs

  • PARI
    a(n) = sum(k=0, n\4, binomial(n+2*k, n-4*k));

Formula

a(n) = 6*a(n-1) - 15*a(n-2) + 20*a(n-3) - 14*a(n-4) + 6*a(n-5) - a(n-6).
G.f.: 1/(1 - x - x^4/(1 - x)^5).
Showing 1-3 of 3 results.