cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A328768 The first primorial based variant of arithmetic derivative: a(prime(i)) = A002110(i-1), where prime(i) = A000040(i), a(u*v) = a(u)*v + u*a(v), with a(0) = a(1) = 0.

Original entry on oeis.org

0, 0, 1, 2, 4, 6, 7, 30, 12, 12, 17, 210, 20, 2310, 67, 28, 32, 30030, 33, 510510, 44, 104, 431, 9699690, 52, 60, 4633, 54, 148, 223092870, 71, 6469693230, 80, 652, 60077, 192, 84, 200560490130, 1021039, 6956, 108, 7420738134810, 229, 304250263527210, 884, 114, 19399403, 13082761331670030, 128, 420, 145, 90124, 9292, 614889782588491410, 135, 1116, 324
Offset: 0

Views

Author

Antti Karttunen, Oct 28 2019

Keywords

Crossrefs

Cf. A042965 (indices of even terms), A016825 (of odd terms), A152822 (antiparity of terms), A373992 (indices of multiples of 3), A374212 (2-adic valuation), A374213 (3-adic valuation), A374123 [a(n) mod 360].
Cf. A374031 [gcd(a(n), A276085(n))], A374116 [gcd(a(n), A328845(n))].
For variants of the same formula, see A003415, A258851, A328769, A328845, A328846, A371192.

Programs

  • PARI
    A002110(n) = prod(i=1,n,prime(i));
    A328768(n) = if(n<=1, 0, my(f=factor(n)); n*sum(i=1, #f~, f[i, 2]*A002110(primepi(f[i,1])-1)/f[i, 1]));
    
  • PARI
    A328768(n) = if(n<=1, 0, my(f=factor(n)); n*sum(i=1, #f~, f[i, 2]*A002110(primepi(f[i, 1]))/(f[i, 1]^2)));

Formula

a(n) = n * Sum e_j * A276085(p_j)/p_j for n = Product p_j^e_j, where for primes p, A276085(p) = A002110(A000720(p)-1).
a(n) = n * Sum e_j * (p_j)#/(p_j^2) for n = Product p_j^e_j with (p_j)# = A034386(p_j).
For all n >= 0, A276150(a(n)) = A328771(n).

A373983 Lexicographically earliest infinite sequence such that a(i) = a(j) = A246277(A324886(i)) = A246277(A324886(j)) and A278226(A328768(i)) = A278226(A328768(j)), for all i, j >= 1.

Original entry on oeis.org

1, 2, 2, 3, 2, 4, 2, 5, 5, 6, 2, 7, 2, 8, 9, 10, 2, 11, 2, 12, 13, 14, 2, 15, 16, 6, 17, 18, 2, 19, 2, 20, 21, 22, 23, 24, 2, 25, 26, 27, 2, 28, 2, 29, 30, 31, 2, 32, 33, 34, 13, 35, 2, 36, 37, 38, 39, 40, 2, 41, 2, 8, 42, 43, 44, 45, 2, 29, 46, 47, 2, 48, 2, 49, 50, 51, 52, 53, 2, 54, 55, 56, 2, 57, 58, 14, 59, 60, 2, 61, 62, 63, 13, 64, 65, 66, 2, 67, 68, 69
Offset: 1

Views

Author

Antti Karttunen, Jun 25 2024

Keywords

Comments

Restricted growth sequence transform of the ordered pair [A246277(A276086(A108951(n))), A046523(A276086(A328768(n)))].
For all i, j >= 1:
A305800(i) = A305800(j) => a(i) = a(j),
a(i) = a(j) => A329345(i) = A329345(j) => A329045(i) = A329045(j),
a(i) = a(j) => A373982(i) = A373982(j) => A328771(i) = A328771(j).
It is hard to say for sure which graphical features in the scatter plot have their provenance in A373982, and which ones in A329345.

Crossrefs

Programs

  • PARI
    up_to = 100000;
    rgs_transform(invec) = { my(om = Map(), outvec = vector(length(invec)), u=1); for(i=1, length(invec), if(mapisdefined(om,invec[i]), my(pp = mapget(om, invec[i])); outvec[i] = outvec[pp] , mapput(om,invec[i],i); outvec[i] = u; u++ )); outvec; };
    A046523(n) = { my(f=vecsort(factor(n)[, 2], , 4), p); prod(i=1, #f, (p=nextprime(p+1))^f[i]); };
    A108951(n) = { my(f=factor(n)); prod(i=1, #f~,  prod(i=1, primepi(f[i, 1]), prime(i))^f[i, 2]); };
    A246277(n) = if(1==n, 0, my(f = factor(n), k = primepi(f[1,1])-1); for (i=1, #f~, f[i,1] = prime(primepi(f[i,1])-k)); factorback(f)/2);
    A276086(n) = { my(m=1, p=2); while(n, m *= (p^(n%p)); n = n\p; p = nextprime(1+p)); (m); };
    A002110(n) = prod(i=1,n,prime(i));
    A328768(n) = if(n<=1, 0, my(f=factor(n)); n*sum(i=1, #f~, f[i, 2]*A002110(primepi(f[i,1])-1)/f[i, 1]));
    Aux373983(n) = [A246277(A276086(A108951(n))), A046523(A276086(A328768(n)))];
    v373983 = rgs_transform(vector(up_to, n, Aux373983(n)));
    A373983(n) = v373983[n];

A374032 Lexicographically earliest infinite sequence such that a(i) = a(j) => A278226(A374031(i)) = A278226(A374031(j)), for all i, j >= 1.

Original entry on oeis.org

1, 2, 2, 2, 2, 2, 2, 3, 4, 2, 2, 4, 2, 2, 4, 4, 2, 2, 2, 4, 3, 2, 2, 2, 4, 2, 2, 4, 2, 2, 2, 5, 4, 2, 4, 2, 2, 2, 4, 6, 2, 2, 2, 4, 2, 2, 2, 2, 4, 2, 4, 4, 2, 2, 3, 3, 7, 2, 2, 2, 2, 2, 2, 2, 4, 2, 2, 4, 4, 2, 2, 2, 2, 2, 2, 4, 8, 2, 2, 2, 3, 2, 2, 2, 4, 2, 4, 3, 2, 2, 9, 4, 3, 2, 4, 2, 2, 2, 2, 2, 2, 2, 2, 3, 6
Offset: 1

Views

Author

Antti Karttunen, Jun 27 2024

Keywords

Comments

Restricted growth sequence transform of A278226(A374031(n)).
For all i, j >= 1:
A305800(i) = A305800(j) => a(i) = a(j) => A374034(i) = A374034(j).

Crossrefs

Programs

  • PARI
    up_to = 100000;
    rgs_transform(invec) = { my(om = Map(), outvec = vector(length(invec)), u=1); for(i=1, length(invec), if(mapisdefined(om,invec[i]), my(pp = mapget(om, invec[i])); outvec[i] = outvec[pp] , mapput(om,invec[i],i); outvec[i] = u; u++ )); outvec; };
    A002110(n) = prod(i=1,n,prime(i));
    A046523(n) = { my(f=vecsort(factor(n)[, 2], , 4), p); prod(i=1, #f, (p=nextprime(p+1))^f[i]); };
    A276085(n) = { my(f = factor(n)); sum(k=1, #f~, f[k, 2]*A002110(primepi(f[k, 1])-1)); };
    A276086(n) = { my(m=1, p=2); while(n, m *= (p^(n%p)); n = n\p; p = nextprime(1+p)); (m); };
    A278226(n) = A046523(A276086(n));
    A328768(n) = if(n<=1, 0, my(f=factor(n)); n*sum(i=1, #f~, f[i, 2]*A002110(primepi(f[i,1])-1)/f[i, 1]));
    A374031(n) = gcd(A276085(n), A328768(n));
    v374032 = rgs_transform(vector(up_to, n, A278226(A374031(n))));
    A374032(n) = v374032[n];

A374033 Lexicographically earliest infinite sequence such that a(i) = a(j) => A278226(A373985(i)) = A278226(A373985(j)), for all i, j >= 1.

Original entry on oeis.org

1, 1, 1, 2, 1, 2, 1, 1, 2, 2, 1, 1, 1, 2, 3, 3, 1, 1, 1, 1, 3, 2, 1, 2, 2, 2, 4, 1, 1, 1, 1, 1, 2, 2, 2, 5, 1, 2, 2, 2, 1, 1, 1, 1, 1, 2, 1, 1, 2, 1, 3, 1, 1, 2, 6, 7, 3, 2, 1, 8, 1, 2, 1, 2, 6, 1, 1, 1, 2, 1, 1, 4, 1, 2, 1, 1, 6, 1, 1, 1, 7, 2, 1, 9, 2, 2, 3, 2, 1, 2, 6, 1, 3, 2, 2, 5, 1, 1, 10, 5, 1, 1, 1, 2, 1
Offset: 1

Views

Author

Antti Karttunen, Jun 27 2024

Keywords

Comments

Restricted growth sequence transform of A278226(A373985(n)).
For all i, j >= 1:
A305800(i) = A305800(j) => a(i) = a(j) => A373989(i) = A373989(j).

Crossrefs

Programs

  • PARI
    up_to = 100000;
    rgs_transform(invec) = { my(om = Map(), outvec = vector(length(invec)), u=1); for(i=1, length(invec), if(mapisdefined(om,invec[i]), my(pp = mapget(om, invec[i])); outvec[i] = outvec[pp] , mapput(om,invec[i],i); outvec[i] = u; u++ )); outvec; };
    A046523(n) = { my(f=vecsort(factor(n)[, 2], , 4), p); prod(i=1, #f, (p=nextprime(p+1))^f[i]); };
    A276086(n) = { my(m=1, p=2); while(n, m *= (p^(n%p)); n = n\p; p = nextprime(1+p)); (m); };
    A278226(n) = A046523(A276086(n));
    A373985(n) = { my(f=factor(n),m=1,s=0); for(i=1, #f~, my(x=prod(i=1,primepi(f[i, 1]),prime(i))); s += f[i, 2]*x; m *= x^f[i, 2]); gcd(m,s); };
    v374033 = rgs_transform(vector(up_to, n, A278226(A373985(n))));
    A374033(n) = v374033[n];

A374201 Lexicographically earliest infinite sequence such that a(i) = a(j) => A278222(A048679(A328845(i))) = A278222(A048679(A328845(j))), for all i, j >= 1, where A328845 is a Fibonacci-based variant of the arithmetic derivative.

Original entry on oeis.org

1, 1, 2, 2, 3, 2, 3, 2, 4, 4, 5, 2, 4, 2, 6, 7, 4, 2, 6, 2, 8, 9, 10, 2, 4, 7, 8, 6, 11, 2, 8, 2, 11, 8, 12, 7, 4, 2, 12, 13, 7, 2, 11, 2, 8, 8, 13, 2, 7, 10, 7, 8, 14, 2, 15, 7, 13, 12, 10, 2, 8, 2, 12, 7, 10, 13, 5, 2, 16, 17, 5, 2, 7, 2, 13, 7, 15, 16, 18, 2, 7, 18, 12, 2, 8, 19, 20, 13, 7, 2, 8, 18, 16, 12, 10, 21, 13, 2, 8, 9, 16
Offset: 0

Views

Author

Antti Karttunen, Jul 02 2024

Keywords

Comments

Restricted growth sequence transform of A278222(A048679(A328845(n))), or equally, of A304101(A328845(n)).
Related to the Zeckendorf-representation (A014417) of A328845(n).
For all i, j >= 0: a(i) = a(j) => A328847(i) = A328847(j).

Crossrefs

Programs

  • PARI
    up_to = 75025;
    rgs_transform(invec) = { my(om = Map(), outvec = vector(length(invec)), u=1); for(i=1, length(invec), if(mapisdefined(om,invec[i]), my(pp = mapget(om, invec[i])); outvec[i] = outvec[pp] , mapput(om,invec[i],i); outvec[i] = u; u++ )); outvec; };
    A072649(n) = { my(m); if(n<1, 0, m=0; until(fibonacci(m)>n, m++); m-2); }; \\ From A072649
    A003714(n) = { my(s=0,w); while(n>2, w = A072649(n); s += 2^(w-1); n -= fibonacci(w+1)); (s+n); }
    A106151(n) = { my(s=0, i=0); while(n, if(2!=(n%4), s += (n%2)<>= 1); (s); };
    A048679(n) = if(!n,n,A106151(2*A003714(n)));
    A005940(n) = { my(p=2, t=1); n--; until(!n\=2, if((n%2), (t*=p), p=nextprime(p+1))); t };
    A046523(n) = { my(f=vecsort(factor(n)[, 2], , 4), p); prod(i=1, #f, (p=nextprime(p+1))^f[i]); };
    A278222(n) = A046523(A005940(1+n));
    A328845(n) = if(n<=1, 0, my(f=factor(n)); n*sum(i=1, #f~, f[i, 2]*fibonacci(f[i,1])/f[i, 1]));
    v374201 = rgs_transform(vector(1+up_to, n, A278222(A048679(A328845(n-1)))));
    A374201(n) = v374201[1+n];

A374211 Lexicographically earliest infinite sequence such that for all i, j >= 1, a(i) = a(j) => f(i) = f(j), with f(1) = 1, and for n > 1, f(n) = [A278226(A328768(n)), A374212(n), A374213(n)], where A328768 is the first primorial based variant of the arithmetic derivative, and A374212 and A374213 are its 2- and 3-adic valuations.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 5, 7, 7, 8, 5, 9, 5, 10, 11, 12, 5, 13, 5, 14, 15, 16, 5, 17, 7, 8, 18, 19, 5, 16, 5, 20, 21, 22, 23, 24, 5, 25, 26, 27, 5, 28, 5, 29, 30, 31, 5, 32, 7, 33, 17, 34, 5, 35, 36, 37, 38, 39, 5, 40, 5, 10, 41, 23, 42, 43, 5, 29, 44, 45, 5, 46, 5, 47, 48, 49, 50, 51, 5, 52, 53, 54, 5, 44, 55, 16, 34, 56, 5, 57, 58, 26, 15, 59, 60, 20, 5, 61, 62, 29
Offset: 1

Views

Author

Antti Karttunen, Jun 30 2024

Keywords

Comments

Restricted growth sequence transform of the function f given in the definition.
For all i, j >= 1:
A305900(i) = A305900(j) => a(i) = a(j),
a(i) = a(j) => A152822(i) = A152822(j),
a(i) = a(j) => A373982(i) = A373982(j) => A328771(i) = A328771(j),
a(i) = a(j) => A373991(i) = A373991(j).

Crossrefs

Programs

  • PARI
    up_to = 100000;
    rgs_transform(invec) = { my(om = Map(), outvec = vector(length(invec)), u=1); for(i=1, length(invec), if(mapisdefined(om,invec[i]), my(pp = mapget(om, invec[i])); outvec[i] = outvec[pp] , mapput(om,invec[i],i); outvec[i] = u; u++ )); outvec; };
    A002110(n) = prod(i=1,n,prime(i));
    A046523(n) = { my(f=vecsort(factor(n)[, 2], , 4), p); prod(i=1, #f, (p=nextprime(p+1))^f[i]); };  \\ From A046523
    A276086(n) = { my(m=1, p=2); while(n, m *= (p^(n%p)); n = n\p; p = nextprime(1+p)); (m); };
    A278226(n) = A046523(A276086(n));
    A328768(n) = if(n<=1, 0, my(f=factor(n)); n*sum(i=1, #f~, f[i, 2]*A002110(primepi(f[i,1])-1)/f[i, 1]));
    Aux374211(n) = if(1==n, n, my(u=A328768(n)); [A278226(u), valuation(u, 2), valuation(u, 3)]);
    v374211 = rgs_transform(vector(up_to, n, Aux374211(n)));
    A374211(n) = v374211[n];
Showing 1-6 of 6 results.