cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A373983 Lexicographically earliest infinite sequence such that a(i) = a(j) = A246277(A324886(i)) = A246277(A324886(j)) and A278226(A328768(i)) = A278226(A328768(j)), for all i, j >= 1.

Original entry on oeis.org

1, 2, 2, 3, 2, 4, 2, 5, 5, 6, 2, 7, 2, 8, 9, 10, 2, 11, 2, 12, 13, 14, 2, 15, 16, 6, 17, 18, 2, 19, 2, 20, 21, 22, 23, 24, 2, 25, 26, 27, 2, 28, 2, 29, 30, 31, 2, 32, 33, 34, 13, 35, 2, 36, 37, 38, 39, 40, 2, 41, 2, 8, 42, 43, 44, 45, 2, 29, 46, 47, 2, 48, 2, 49, 50, 51, 52, 53, 2, 54, 55, 56, 2, 57, 58, 14, 59, 60, 2, 61, 62, 63, 13, 64, 65, 66, 2, 67, 68, 69
Offset: 1

Views

Author

Antti Karttunen, Jun 25 2024

Keywords

Comments

Restricted growth sequence transform of the ordered pair [A246277(A276086(A108951(n))), A046523(A276086(A328768(n)))].
For all i, j >= 1:
A305800(i) = A305800(j) => a(i) = a(j),
a(i) = a(j) => A329345(i) = A329345(j) => A329045(i) = A329045(j),
a(i) = a(j) => A373982(i) = A373982(j) => A328771(i) = A328771(j).
It is hard to say for sure which graphical features in the scatter plot have their provenance in A373982, and which ones in A329345.

Crossrefs

Programs

  • PARI
    up_to = 100000;
    rgs_transform(invec) = { my(om = Map(), outvec = vector(length(invec)), u=1); for(i=1, length(invec), if(mapisdefined(om,invec[i]), my(pp = mapget(om, invec[i])); outvec[i] = outvec[pp] , mapput(om,invec[i],i); outvec[i] = u; u++ )); outvec; };
    A046523(n) = { my(f=vecsort(factor(n)[, 2], , 4), p); prod(i=1, #f, (p=nextprime(p+1))^f[i]); };
    A108951(n) = { my(f=factor(n)); prod(i=1, #f~,  prod(i=1, primepi(f[i, 1]), prime(i))^f[i, 2]); };
    A246277(n) = if(1==n, 0, my(f = factor(n), k = primepi(f[1,1])-1); for (i=1, #f~, f[i,1] = prime(primepi(f[i,1])-k)); factorback(f)/2);
    A276086(n) = { my(m=1, p=2); while(n, m *= (p^(n%p)); n = n\p; p = nextprime(1+p)); (m); };
    A002110(n) = prod(i=1,n,prime(i));
    A328768(n) = if(n<=1, 0, my(f=factor(n)); n*sum(i=1, #f~, f[i, 2]*A002110(primepi(f[i,1])-1)/f[i, 1]));
    Aux373983(n) = [A246277(A276086(A108951(n))), A046523(A276086(A328768(n)))];
    v373983 = rgs_transform(vector(up_to, n, Aux373983(n)));
    A373983(n) = v373983[n];