A374004 a(n) = (1 + (n+3)^2 - (n-4)*(-1)^n)/2.
7, 14, 18, 25, 33, 40, 52, 59, 75, 82, 102, 109, 133, 140, 168, 175, 207, 214, 250, 257, 297, 304, 348, 355, 403, 410, 462, 469, 525, 532, 592, 599, 663, 670, 738, 745, 817, 824, 900, 907, 987, 994, 1078, 1085, 1173, 1180, 1272, 1279, 1375, 1382, 1482, 1489, 1593
Offset: 1
Examples
[ 1] [ 2] [ 3] [ 4] [ 5] [ 6] [ 7] [ 8] [ 9] [10] [11] [12] [ 1] 1 3 4 10 11 21 22 36 37 55 56 78 ... [ 2] 2 5 9 12 20 23 35 38 54 57 77 ... [ 3] 6 8 13 19 24 34 39 53 58 76 ... [ 4] 7 14 18 25 33 40 52 59 75 ... [ 5] 15 17 26 32 41 51 60 74 ... [ 6] 16 27 31 42 50 61 73 ... [ 7] 28 30 43 49 62 72 ... [ 8] 29 44 48 63 71 ... [ 9] 45 47 64 70 ... [10] 46 65 69 ... [11] 66 68 ... [12] 67 ... ...
Links
- Index entries for linear recurrences with constant coefficients, signature (1,2,-2,-1,1).
Crossrefs
Programs
-
Magma
[(1 + (n+3)^2 - (n-4)*(-1)^n)/2: n in [1..80]];
-
Mathematica
CoefficientList[Series[-(7*x^4 - 7*x^3 - 10*x^2 + 7 x + 7)/((x + 1)^2*(x - 1)^3), {x, 0, 50}], x] k := 4; Table[(1 + (n+k-1)^2 + (n-k) (-1)^(n+k-1))/2, {n, 80}]
Formula
a(n) = a(n-1) + 2*a(n-2) - 2*a(n-3) - a(n-4) + a(n-5).
G.f.: -x*(7*x^4-7*x^3-10*x^2+7x+7)/((x+1)^2*(x-1)^3).
a(n) = A373663(n+1) + (-1)^n.
Comments