A374005 a(n) = (1 + (n+4)^2 + (n-5)*(-1)^n)/2.
15, 17, 26, 32, 41, 51, 60, 74, 83, 101, 110, 132, 141, 167, 176, 206, 215, 249, 258, 296, 305, 347, 356, 402, 411, 461, 470, 524, 533, 591, 600, 662, 671, 737, 746, 816, 825, 899, 908, 986, 995, 1077, 1086, 1172, 1181, 1271, 1280, 1374, 1383, 1481, 1490, 1592, 1601
Offset: 1
Examples
[ 1] [ 2] [ 3] [ 4] [ 5] [ 6] [ 7] [ 8] [ 9] [10] [11] [12] [ 1] 1 3 4 10 11 21 22 36 37 55 56 78 ... [ 2] 2 5 9 12 20 23 35 38 54 57 77 ... [ 3] 6 8 13 19 24 34 39 53 58 76 ... [ 4] 7 14 18 25 33 40 52 59 75 ... [ 5] 15 17 26 32 41 51 60 74 ... [ 6] 16 27 31 42 50 61 73 ... [ 7] 28 30 43 49 62 72 ... [ 8] 29 44 48 63 71 ... [ 9] 45 47 64 70 ... [10] 46 65 69 ... [11] 66 68 ... [12] 67 ... ...
Links
- Index entries for linear recurrences with constant coefficients, signature (1,2,-2,-1,1).
Crossrefs
Programs
-
Magma
[(1 + (n+4)^2 + (n-5)*(-1)^n)/2: n in [1..80]];
-
Mathematica
CoefficientList[Series[-(6*x^4 + 2*x^3 - 21*x^2 + 2*x + 15)/((x + 1)^2*(x - 1)^3), {x, 0, 50}], x] k := 5; Table[(1 + (n + k - 1)^2 + (n - k) (-1)^(n + k - 1))/2, {n, 80}]
Formula
a(n) = a(n-1) + 2*a(n-2) - 2*a(n-3) - a(n-4) + a(n-5).
G.f.: -x*(6*x^4+2*x^3-21*x^2+2*x+15)/((x+1)^2*(x-1)^3).
a(n) = A374004(n+1) - (-1)^n.
Comments