cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A374028 Lexicographically earliest sequence of prime numbers whose partial products, starting from the second, are all Fermat pseudoprimes to base 2 (A001567).

Original entry on oeis.org

11, 31, 41, 61, 181, 54001, 6841, 54721, 110017981, 13681, 20521, 61561, 123121, 225721, 246241, 205201, 410401, 1128601, 513001, 3078001, 4617001, 73442619001, 96993612810001, 55404001, 7188669001, 16773561001, 67094244001, 821904489001, 29370505311001
Offset: 1

Views

Author

Amiram Eldar, Jun 26 2024

Keywords

Examples

			The partial products begin with 11, 11 * 31 = 341 = A001567(1), 11 * 31 * 41 = 13981 = A001567(29), 11 * 31 * 41 * 61 = 852841 = A001567(234), 11 * 31 * 41 * 61 * 181 = 154364221 = A001567(2509), ... .
		

Crossrefs

Programs

  • Mathematica
    pspQ[n_] := PowerMod[2, n - 1, n] == 1; a[1] = 11; a[n_] := a[n] = Module[{p = 2, r = Product[a[i], {i, 1, n - 1}]}, While[! pspQ[p*r], p = NextPrime[p]]; p]; Array[a, 10]
  • PARI
    ispsp(n) = Mod(2, n)^(n-1) == 1;
    lista(len) = {my(prd = 1, c = 0, k = 11); while(c < len, while(!ispsp(prd * k), k = nextprime(k+1)); prd *= k; print1(k,", "); c++; k = 3);}
    
  • PARI
    my(P=List(11), base=2); my(m = vecprod(Vec(P))); my(L = znorder(Mod(base, m))); print1(P[1], ", "); while(1, forstep(p=lift(1/Mod(m, L)), oo, L, if(isprime(p) && m % p != 0 && base % p != 0, if((m*p-1) % znorder(Mod(base, p)) == 0, print1(p, ", "); listput(P, p); L = lcm(L, znorder(Mod(base, p))); m *= p; break)))); \\ Daniel Suteu, Jun 30 2024

Extensions

a(23)-a(29) from Daniel Suteu, Jun 30 2024

A374029 Lexicographically earliest strictly increasing sequence of prime numbers whose partial products, starting from the second, are all Fermat pseudoprimes to base 2 (A001567).

Original entry on oeis.org

11, 31, 41, 61, 181, 54001, 54721, 61561, 123121, 225721, 246241, 430921, 523261, 800281, 2400841, 9603361, 28810081, 76826881, 96033601, 15909022209601, 133133396385601, 5791302742773601, 15443473980729601, 61773895922918401, 386086849518240001, 13706083157897520001
Offset: 1

Views

Author

Amiram Eldar, Jun 26 2024

Keywords

Comments

Are all the terms of the form 10*k+1?

Examples

			The partial products begin with 11, 11 * 31 = 341 = A001567(1), 11 * 31 * 41 = 13981 = A001567(29), 11 * 31 * 41 * 61 = 852841 = A001567(234), 11 * 31 * 41 * 61 * 181 = 154364221 = A001567(2509), ... .
		

Crossrefs

Programs

  • Mathematica
    pspQ[n_] := PowerMod[2, n - 1, n] == 1; a[1] = 11; a[n_] := a[n] = Module[{p = NextPrime[a[n-1]], r = Product[a[i], {i, 1, n - 1}]}, While[! pspQ[p*r], p = NextPrime[p]]; p]; Array[a, 10]
  • PARI
    ispsp(n) = Mod(2, n)^(n-1) == 1;
    lista(len) = {my(prd = 1, c = 0, k = 11); while(c < len, while(!ispsp(prd * k), k = nextprime(k+1)); prd *= k; print1(k,", "); c++);}
    
  • PARI
    my(P=List(11), base=2); my(m = vecprod(Vec(P))); my(L = znorder(Mod(base, m))); print1(P[1], ", "); while(1, forstep(p=lift(1/Mod(m, L)), oo, L, if(p > P[#P] && isprime(p) && base % p != 0, if((m*p-1) % znorder(Mod(base, p)) == 0, print1(p, ", "); listput(P, p); L = lcm(L, znorder(Mod(base, p))); m *= p; break)))); \\ Daniel Suteu, Jun 30 2024

Extensions

a(20)-a(26) from Daniel Suteu, Jun 30 2024
Showing 1-2 of 2 results.