cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A374087 a(n) is the number of ways to partition {1,2,...,n} into two sets X and Y such that the sum of the elements of each is a square.

Original entry on oeis.org

1, 1, 0, 0, 1, 0, 0, 0, 1, 8, 0, 0, 0, 0, 0, 0, 365, 8, 0, 0, 0, 0, 0, 0, 0, 91514, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 104742767, 0, 0, 0, 6519062, 0, 0, 0, 0, 0, 0, 0, 0, 531168463492, 0, 0, 15329991499, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 11530164811834907, 0, 0, 0, 0
Offset: 0

Views

Author

Gonzalo Martínez, Jun 27 2024

Keywords

Comments

{X, Y} satisfies the property if there exists an integer k such that n*(n+1)/2 - k^2 is a square, where k^2 is the sum of the elements of X and n*(n + 1)/2 - k^2 the sum of the elements of Y.
Note that k can also be zero. If n is A001108(k), i.e., if n*(n + 1)/2 is a perfect square, it suffices to take X = {1, 2, ..., n} and Y = { }.
a(n) > 0 if and only if n is a term of A140612.
Proof: (==>) If n is such that a(n) > 0, then it is possible to partition {1,2,...,n} into two sets, X and Y, whose sums of elements are b^2 and c^2, respectively, for some integers b, c. Then, n*(n + 1)/2 = b^2 + c^2, so, n*(n + 1) = 2*(b^2 + c^2) = (b + c)^2 + (b - c)^2, i.e., n*(n + 1) is a sum of two squares, whence necessarily n and (n + 1) are sums of two squares. Thus, n is in A140612.
(<==) If n is A140612, then n and (n + 1) are sums of two squares, whence it follows that n*(n + 1) is a sum of 2 squares and is also even. Then n*(n + 1)/2 is also a sum of two squares. Then, there exist integers k and m such that n*(n + 1)/2 = k^2 + m^2, so that n*(n + 1)/2 - k^2 = m^2. Therefore, given the set {1,2,...,n}, if we choose X such that the sum of the elements is k^2, it follows that a(n) > 0.

Examples

			If n = 4, then the only way is {1}, {2, 3, 4}.
If n = 8, then the only way is { }, {1, 2, 3, 4, 5, 6, 7, 8}.
If n = 9, there are 8 ways, which are shown below:
  {9},  {1, 2, 3, 4, 5, 6, 7, 8}
  {1, 8}, {2, 3, 4, 5, 6, 7, 9}
  {2, 7}, {1, 3, 4, 5, 6, 8, 9}
  {3, 6}, {1, 2, 4, 5, 7, 8, 9}
  {4, 5}, {1, 2, 3, 6, 7, 8, 9}
  {1, 2, 6}, {3, 4, 5, 7, 8, 9}
  {1, 3, 5}, {2, 4, 6, 7, 8, 9}
  {2, 3, 4}, {1, 5, 6, 7, 8, 9}
In each of the 8 cases, the sum of the elements of the subsets are 9 and 36, respectively.
If n = 25, there are 91514 ways. Some examples with sums different from each other:
  {1}, {2, 3, ..., 25}, where the sums are 1^2 and 18^2, respectively.
  {1, 2, 3, 4, 5, 6, 7, 8}, {9, 10, 11, ..., 25}, where the sums are 6^2 and 17^2.
  X = {6, 22, 23, 24, 25}, Y = {1, 2, ..., 25} - X, whose sums are 10^2 and 15^2.
		

Crossrefs

Extensions

a(36)-a(68) from Alois P. Heinz, Jun 29 2024