cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A374147 Number of complete Carlitz compositions of n.

Original entry on oeis.org

1, 0, 2, 1, 1, 8, 7, 9, 20, 49, 72, 115, 202, 349, 695, 1171, 2009, 3530, 6203, 10818, 19320, 33961, 59449, 104349, 183370, 321635, 564081, 992513, 1741441, 3057547, 5363570, 9410785, 16516575, 28967505, 50798456, 89106542, 156276871, 274037619, 480437247, 842350671, 1476760717, 2588651452, 4537418431, 7952741429, 13938276465
Offset: 1

Views

Author

John Tyler Rascoe, Jun 28 2024

Keywords

Comments

These are integer compositions such that no adjacent parts are equal and their set of parts covers an initial interval.

Examples

			a(7) = 7 counts: (1,2,1,3), (1,2,3,1), (1,3,2,1), (1,3,1,2), (2,1,3,1), (3,2,1,2), (1,2,1,2,1).
		

Crossrefs

Programs

  • PARI
    Ca_x(s,N)={my(x='x+O('x^N), g=if(#s <1,1, sum(i=1,#s, (Ca_x(s[^i],N) * x^(s[i])/(1+x^(s[i]))))/(1-sum(i=1,#s, (x^(s[i]))/(1+x^(s[i])))))); return(g)}
    B_x(N)={my(x='x+O('x^N), j=1, h=0); while((j*(j+1))/2 <= N, h += Ca_x([1..j],N+1); j+=1); my(a = Vec(h)); vector(N,i,a[i])}
    B_x(45)

Formula

G.f.: Sum_{k>0} Ca({1..k},x) where Ca({s},x) = Sum_{i in {s}} ( (Ca({s}-{i},x)*x^i)/(1 + x^i) )/(1 - Sum_{i in {s}} ( (x^i)/(1 + x^i) )) is the g.f. for Carlitz compositions such that their set of parts equals {s} with Ca({},x) = 1.